Nombre premier de Sophie Germain

Un nombre premier G est appelé nombre premier de Sophie Germain si 2G + 1 est aussi un nombre premier, qui est alors appelé nombre premier sûr et noté S dans ce qui suit.

Un corollaire du théorème de Sophie Germain est que pour ces nombres premiers, un cas particulier du dernier théorème de Fermat (le « premier cas ») est vrai, c'est-à-dire qu'il n'existe pas d'entiers x, y, z tous trois non divisibles par G tels que xG + yG = zG.

Il est conjecturé qu'il existe une infinité de nombres premiers de Sophie Germain ; cependant, comme pour la conjecture des nombres premiers jumeaux, cela n'a pour le moment pas été démontré.

Listes de nombres premiers de Sophie Germain

Les quarante-cinq premiers nombres premiers de Sophie Germain sont (voir suite A005384 de l'OEIS) :

2, 3, 5, 11, 23, 29, 41, 53, 83, 89, 113, 131, 173, 179, 191, 233, 239, 251, 281, 293, 359, 419, 431, 443, 491, 509, 593, 641, 653, 659, 683, 719, 743, 761, 809, 911, 953, 1 013, 1 019, 1 031, 1 049, 1 103, 1 223, 1 229 et 1 289.

Ils sont classés dans les deux tableaux ci-dessous, ordonnés sous la forme Gi inscrite en gras sous leur occurrence dans la liste complète des nombres premiers p, associés à leur nombre premier sûr noté Si = 2Gi + 1 dans la case immédiatement au-dessous.

Des premières relations élémentaires entre nombres de Sophie Germain

En excluant les premiers nombres de Sophie Germain, tous les nombres de Sophie Germain sont de la forme 11+30n ou 23+30n ou 29+30n où n est un entier. Ceci résulte de l'étude du groupe des unités de Z/30Z. Ce type de relation, qu'on peut généraliser, est utile pour limiter l'étude des cas possibles dans le cadre d'une recherche des nombres de Sophie Germain par des ordinateurs, par exemple.

Quantité de nombres premiers de Sophie Germain

Une estimation heuristique pour la quantité de nombres premiers de Sophie Germain inférieurs à n est 2C2 n / (ln n)² où C2 est la constante des nombres premiers jumeaux, approximativement égale à 0,660161. Pour n = 104, cette estimation prédit 156 nombres premiers de Sophie Germain, qui est de 20 % d'erreur comparé à la valeur exacte de 190 ci-dessus. Pour n = 107, l'estimation prédit 50 822, qui est d'un écart de 10 % par rapport à la valeur exacte de 56 032.

Chaîne de Cunningham

Une suite {p, 2p + 1, 2(2p + 1) + 1, ...} de nombres premiers de Sophie Germain est appelée une chaîne de Cunningham de première espèce. Chaque terme d'une telle suite, à l'exception du premier et du dernier, est à la fois un nombre premier de Sophie Germain et un nombre premier sûr. Le premier est un nombre de Sophie Germain, le dernier un nombre premier sûr.

Exemple d'application

Soit un nombre premier de la forme . Alors est un nombre premier de Sophie Germain si et seulement si le nombre de Mersenne est un nombre composé dont est un diviseur[1]. Ce théorème dû à Euler[1] peut être utilisé comme test de primalité[1]; par exemple 83 est premier (et 83 = 4 × 20 + 3) de même que 167 = 2 × 83 + 1. Par conséquent est divisible par 167 et n'est donc pas premier.

Références

  1. G. H. Hardy et E. M. Wright (trad. de l'anglais par François Sauvageot, préf. Catherine Goldstein), Introduction à la théorie des nombres [« An Introduction to the Theory of Numbers »] [détail de l’édition], chapitre 6 (« Le théorème de Fermat et ses conséquences »), section 6.15.

Voir aussi

Article connexe

Conjecture de Dickson

Lien externe

« Nombres - Curiosités, théorie et usages : Nombres premiers de Sophie Germain », sur villemin.gerard.free.fr

  • Arithmétique et théorie des nombres
Cet article est issu de Wikipedia. Le texte est sous licence Creative Commons - Attribution - Partage dans les Mêmes. Des conditions supplémentaires peuvent s'appliquer aux fichiers multimédias.