Émission thermoionique

Une émission thermoionique est un flux d'électrons provenant d'un métal ou d'un oxyde métallique, qui est provoqué par les vibrations des atomes dues à l'énergie thermique lorsque ceux-ci parviennent à surmonter les forces électrostatiques. L'effet croît de manière importante avec l'augmentation de la température, mais est toujours présent pour les températures au-dessus du zéro absolu. La science en rapport avec ce phénomène est la thermoélectricité. Les particules chargées sont appelées « thermions ».

Gros plan du filament d'une lampe à vapeur de mercure basse pression à cathode chaude, montrant dans sa partie centrale l'enrobage blanc (typiquement constitué d'un mélange d'oxydes de baryum, strontium et calcium) responsable de l'émission thermoionique. Au cours d'une utilisation normale, cet enrobage subit une érosion (cf. procédé de pulvérisation cathodique) qui finit souvent par conduire à une panne de la lampe.

Histoire

Cet effet est rapporté en 1873 par Frederick Guthrie en Grande-Bretagne, alors qu'il effectue un travail sur les objets chargés. Le professeur Guthrie découvre qu'une sphère de fer chauffée au rouge et chargée négativement, perd sa charge. Il découvre aussi que cela ne se produit pas si la sphère possède une charge positive.

On peut également citer les travaux de J.W.Hittorf qui étudie la conductibilité de l’air au voisinage des métaux chauffés au rouge, lorsqu'il constate le même phénomène dans l’action de l’électricité sur les gaz raréfiés. Grâce à l'émission thermoélectrique, il devint possible de créer de façon simple un courant électrique dans un tube où l'on avait pratiqué un vide complet : on savait en effet depuis Peltier que les métaux portés à incandescence émettent de l'électricité ; mais tant que l'émission thermoélectrique ne pouvait être mesurée que dans l'air, les résultats ne donnaient rien d'exploitable à cause des difficultés liées à la convection des gaz. L'obtention de faisceaux électriques non perturbés prit toutefois encore un peu de temps, parce que les métaux chauffés dégagent eux-mêmes des gaz qui dégradent le vide créé dans un tube électronique ; le problème ne fut résolu qu'avec l'utilisation d'électrodes en tungstène (1913). Les tubes électroniques eurent bientôt une multitude d'applications techniques, comme le redressement du courant alternatif, l'amplification de signaux faibles en TSF ou la génération d'ondes porteuses non atténuées dans l'émission radio[1].

Owen Richardson travailla sur l'émission thermoionique et reçut le prix Nobel en 1928 « Pour son travail sur le phénomène thermoionique et plus spécialement pour la découverte de la loi portant maintenant son nom ».

Loi de Richardson

Dans chaque métal, il y a un ou deux électrons libres qui peuvent se déplacer d'un atome à un autre. Cela est parfois appelé « mer d'électrons ». Leur énergie suit une distribution statistique, au lieu d'être uniforme, et sous certaines conditions un électron pourra avoir une énergie suffisante pour partir du métal sans y revenir. L'énergie minimum nécessaire pour qu'un électron puisse quitter la surface est appelée le travail de sortie, et varie d'un métal à l'autre. Pour les tubes électroniques, une fine couche d'oxyde est souvent appliquée à la surface du métal pour obtenir un travail de sortie plus bas, ce qui facilite le départ des électrons de la surface.

L'équation de Richardson énonce que la densité de courant émis J (A/m2) est relative à la température T par l'équation :

T est la température du métal en kelvins, W est le travail de sortie du métal en électron-volt, k est la constante de Boltzmann, et AG la constante de Richardson. L'exponentielle dans l'équation montre que le courant émis augmente énormément avec la température et tend à devenir proportionnel au carré de celle-ci pour les températures élevées. Les équations de l'émission thermoionique sont importantes dans la conception des semi-conducteurs.

De 1911 à 1930, comme la compréhension physique du comportement des électrons dans les métaux augmentait, plusieurs expressions théoriques furent proposées pour AG par Richardson, Dushman, Fowler, Sommerfeld et Nordheim. Au début du XXIe siècle, la forme précise de cette expression est encore débattue par les spécialistes théoriques, mais il y a une entente que AG devrait s'écrire comme :

λR est un facteur correctif lié au matériau (d'une valeur proche de 0,5) et A0 est une constante universelle donnée par

m et e représentent la masse et la charge de l'électron, et h est la constante de Planck.

Vers 1930, il y avait accord que, à cause de la nature ondulatoire de l'électron, une partie rav des électrons sortants sont réfléchis lorsqu'ils atteignent la surface de l'émetteur, ce qui réduit la densité du courant d'émission : λR aurait la valeur (1-rav). C'est pourquoi l'équation de l'émission thermoionique est écrite ainsi :

.

Cependant, un traitement théorique plus récent par Modinos fait l'hypothèse que la bande de valence du matériau émetteur doit aussi être prise en compte. Cela introduit un deuxième facteur de correction λB pour λR, ce qui donne .

Les valeurs expérimentales du coefficient AG sont généralement du même ordre de grandeur que A0, mais diffèrent sensiblement entre les matériaux émetteurs, ainsi que selon la face cristallographique du même matériau. De façon qualitative, ces différences expérimentales s'expliquent par des valeurs différentes de λR.

Une confusion importante existe dans la littérature à ce sujet : (1) plusieurs articles ne distinguent pas AG de A0, n'utilisant que A (ou parfois le terme « constante de Richardson ») ; (2) les équations qui ont recours ou non au facteur de correction (λR) reçoivent le même nom ; et (3) différents noms sont donnés à ces équations, dont « équation de Richardson », « équation de Dushman », « équation de Richardson-Dushman » et « équation de Richardson-Laue-Dushman ».

L'effet Edison

L'effet Edison dans une diode à vide. Celle-ci est connectée de deux façons : en direct, les électrons circulent. En inverse, il n'y a aucun flux. Les flèches représentent la circulation d'électrons dans le vide.

L'effet fut re-découvert accidentellement en 1880, par Thomas Edison, alors qu'il essayait d'expliquer la rupture du filament et le noircissement du verre des lampes incandescentes. Edison construisit une ampoule avec la surface interne recouverte d'une feuille d'étain. Quand il connectait la feuille au filament au travers d'un galvanomètre, en appliquant une tension négative à la feuille par rapport au filament, rien ne se passait. Mais, quand il augmentait la tension de la feuille de manière à atteindre une tension positive par rapport au filament, une petite circulation de courant était indiquée par le galvanomètre : des électrons étaient émis par le filament chaud et attirés par la feuille, fermant ainsi le circuit. Cette unidirectionalité du courant fut appelée l'effet Edison (ce terme est parfois utilisé comme référence à l'effet thermoionique lui-même). Bien qu'Edison ne voyait pas d'application pour cet effet, il le breveta en 1883, mais ne l'étudia plus.

La diode à vide

Le physicien anglais John Ambrose Fleming, alors qu'il travaillait pour la société « Wireless Telegraphy », découvrit que l'effet Edison pouvait être utilisé pour la détection des ondes radios. Fleming développa un tube électronique à deux éléments connu sous le nom de diode à vide, qu'il breveta le . La diode thermoionique peut aussi être configurée comme un convertisseur différence de chaleur/énergie électrique et ce sans pièces mobiles.

Émission Schottky

L'effet Schottky ou « amplification par effet de champ de l'émission thermoionique » est une amplification de l'émission thermoionique dans des dispositifs émetteur d'électrons (canon à électrons par exemple). Cette émission d'électron provoque une différence de potentiel locale négative sur la zone d'émission, créant un champ électrique qui va abaisser la barrière de potentiel à l'émission d'électrons.

Notes et références

  1. D'après Philip Lenard, Grosse Naturforscher : Eine Geschichte der Naturforschung in Lebenbeschreibungen, Heidelberg, J. F. Lehmann Verlag, (réimpr. 1942), « 41. Heinrich Hertz »

Voir aussi

Articles connexes

Liens externes

  • Portail de l’électricité et de l’électronique
  • Portail de la physique
Cet article est issu de Wikipedia. Le texte est sous licence Creative Commons - Attribution - Partage dans les Mêmes. Des conditions supplémentaires peuvent s'appliquer aux fichiers multimédias.