Diol

Un diol ou glycol est un composé chimique organique portant deux groupes hydroxyle (-OH)[1].

L'éthylène glycol, un diol simple.
La résorcine (résorcinol), un des isomères du benzènediol.

Lorsque les deux groupes hydroxyle sont portés par le même atome de carbone, on parle de diol géminal. Parmi ceux-ci, on compte par exemple le méthanediol (H2C(OH)2) ou le 1,1,1,3,3,3-hexafluoropropane-2,2-diol ((F3C)2C(OH)2), la forme hydratée de l'hexafluoroacétone.

On parle de diol vicinal lorsque les deux groupes hydroxyle sont en position vicinale, c'est-à-dire attachés à des atomes de carbone adjacents. On compte parmi ceux-ci l'éthane-1,2-diol ou éthylène glycol (HO-(CH2)2-OH), un composant courant des produits antigels ou le propane-1,2-diol (propylène glycol, HO-CH2-CH(OH)-CH3).

Parmi les composés avec des groupes hydroxyles bien plus éloignés, on compte le butane-1,4-diol (HO-(CH2)4-OH) ou encore le bisphénol A.

Classification

Les diols peuvent être classés en différents groupes, selon qu'ils sont :

Exemples de diols aliphatiques :

LinéaritéDiols vicinauxGroupes hydroxyle sur des atomes non voisins
LinéaireÉthylène glycolPropane-1,3-diol, butane-1,4-diol, pentane-1,5-diol, hexane-1,6-diol, octane-1,8-diol,
RamifiéPropane-1,2-diol, butane-1,2-diol, butane-2,3-diolButane-1,3-diol, pentane-1,2-diol, étohexadiol, p-menthane-3,8-diol, 2-méthylpentane-2,4-diol

Synthèse

Les diols étant des composés assez communs, de nombreuses méthodes de préparation ont été développées :

  • Une réaction chimique appelée dihydroxylation asymétrique de Sharpless (en) peut être utilisée pour produire des diols chiraux à partir d'alcènes en utilisant un réactif osmate et un catalyseur chiral.
  • D'autres méthodes incluent la cis-hydroxylation de Woodward (en) (cis diol) ou la réaction de Prévost (en) (anti diol), décrite plus bas, utilisant toutes deux du diiode et des sels d'argent d'acide carboxylique.

Réactions

Diols en général

Un diol réagit comme un alcool, par exemple par estérification ou par formation d'éther-oxyde (synthèse de Wiliamson, par exemple).

Les diols comme l'éthylène glycol sont utilisés comme co-monomères dans des réactions de polymérisation formant des polymères, comme pour le polyesters et les polyuréthanes. Un monomère différent avec deux groupes fonctionnels identiques, comme le dichlorure de dioyle ou l'acide dioïque sont nécessaires pour poursuivre le processus de polymérisation par des estérifications répétées.

Un diol peut être converti en éther-oxyde cyclique en utilisant une catalyse acide, réaction connue sous le nom de cyclisation de diol. La réaction débute par une protonation d'un des groupes hydroxyle, suivie par une substitution nucléophile intramoléculaire du second groupe hydroxyle, attaquant le carbone électropositif. Si le nombre d'atomes carbone dans la chaîne est suffisant, pour que l'angle ne soit pas trop grand et les liaisons pas trop tendues, un éther cyclique peut être formé.

Diols vicinaux

Dans le clivage du glycol la liaison C-C d'un diol vicinal est clivée avec formation de cétones et/ou d'aldéhydes. Une des applications de ces diols vicinaux est la protection de fonction carbonyle par acétalisation, en milieu acide non aqueux.

Diols géminaux

En général, les diols géminaux organiques sont facilement déshydratés pour former un groupe carbonyle. Par exemple, l'acide carbonique ((HO)2C=O) est instable et a tendance à se transformer en dioxyde de carbone (CO2) et en eau (H2O). Cependant, dans quelques rares situations, l'équilibre chimique est en faveur du diol géminal. Par exemple, le formaldéhyde (H2C=O) est dissous dans l'eau en un diol géminal, le méthanediol (H2C(OH)2). D'autres exemples sont les diols géminaux cycliques comme le décahydroxycyclopentane (C5(OH)10) ou le dodécahydroxycyclohexane (C6(OH)12), qui sont stables, alors que leurs équivalents oxydes de carbone (C5O5 et C6O6) ne semblent pas l'être.

Polymères diols

Ce sont des oligomères fonctionnalisés en bouts de chaînes par des fonctions hydroxyles. Selon les références, ils peuvent être nommés oligomères glycols, macrodiols ou oligomères hydroxytéléchéliques. Les polymères diols les plus utilisés ont une masse relativement faible comprise entre 500 et 3000 g/mol. Les exemples-types sont :

Notes et références

  1. March, Jerry (1985), Advanced Organic Chemistry: Reactions, Mechanisms, and Structure (3rd ed.), New York: Wiley, (ISBN 0-471-85472-7)
  2. trans-cyclohexanediol Organic Syntheses, Coll. Vol. 3, p.217 (1955); Vol. 28, p.35 (1948) http://www.orgsynth.org/orgsyn/pdfs/CV3P0217.pdf.
  3. Advantages of Synthesizing trans-1,2-Cyclohexanediol in a Continuous Flow Microreactor over a Standard Glass Apparatus Andreas Hartung, Mark A. Keane, and Arno Kraft J. Org. Chem. 2007, 72, 10235-10238 DOI:10.1021/jo701758p

Voir aussi

  • Alcools, composés chimiques avec un seul groupe hydroxyle
  • Triols, composés chimiques avec trois groupes hydroxyle
  • Polyols, composés chimiques avec de multiples groupes hydroxyle
  • Portail de la chimie
Cet article est issu de Wikipedia. Le texte est sous licence Creative Commons - Attribution - Partage dans les Mêmes. Des conditions supplémentaires peuvent s'appliquer aux fichiers multimédias.