Muscle
Le muscle est un organe composé de tissu mou, retrouvé chez les animaux. Cet organe est composé de tissus musculaires et de tissus conjonctifs (+ vaisseaux sanguins + nerfs). Les cellules musculaires (composant le tissu musculaire) contiennent des filaments protéiques d'actine et de myosine qui glissent les uns sur les autres, produisant une contraction qui modifie à la fois la longueur et la forme de la cellule. Les muscles fonctionnent pour produire de la force et du mouvement. Ils sont principalement responsables du maintien et de l'évolution de la posture, de la locomotion, ainsi que du mouvement des organes internes, tels que la contraction du cœur et la circulation des aliments dans le système digestif par péristaltisme.
Nom latin | musculus (TA +/-) |
---|---|
MeSH | D009132 |
Les tissus musculaires dérivent du mésoderme (couche de cellules germinales embryologique) grâce à un processus connu sous le nom de la myogenèse. Il existe trois types de muscles : strié squelettique, strié cardiaque et lisse. L'action du muscle peut-être classé comme étant, soit volontaire soit involontaire. Le muscle cardiaque, de l'ouïe[1] et le muscle lisse se contractent sans intervention de la pensée et sont qualifiés d'involontaires, tandis que les muscles striés squelettiques se contractent sous la commande volontaire[2]. Les muscles squelettiques peuvent à leur tour être divisés en deux types : composés de fibres à contraction rapide et à contraction lente.
Les muscles utilisent de l'énergie obtenue principalement par l'oxydation des graisses (lipides) et des hydrates de carbone (glucides) en condition aérobie, mais aussi par des réactions chimiques en condition anaérobie (notamment pour la contraction des fibres rapides). Ces réactions chimiques produisent de l'adénosine triphosphate (ATP), monnaie énergétique utilisés dans le mouvement des têtes de myosine[3].
Le terme muscle dérive du latin musculus, signifiant « petite souris », dont l'origine peut provenir de la forme de certains muscles ou bien parce qu'en se contractant les muscles ressemblent à des souris se déplaçant sous la peau[4],[5].
Description générale du muscle
Types de tissu musculaire
Le tissu musculaire est un tissu mou, et est l'un des quatre tissu fondamentaux présents chez les animaux (avec le tissu conjonctif, le tissu nerveux et le tissu épithélial). Il existe trois types de tissu musculaire reconnus chez les vertébrés :
- Le muscle squelettique ou « muscle volontaire » est ancrée par des tendons (ou par une aponévrose à quelques endroits) à l'os et permet des mouvements volontaires tels que la locomotion et le maintien de la posture. Si ce contrôle postural est généralement un réflexe inconscient, ces muscles dit posturaux réagissent à la volonté consciente, de façon semblable aux autres muscles squelettiques. Les muscles squelettiques d'un adulte masculin compose 42 % de sa masse corporelle, contre 36 % pour une femme adulte.
- Il est composé de différentes cellules, les fibres musculaires striées squelettiques (FMSS) extrafusales aussi nommé le rhabdomyocyte (très longue cellule formé par syncytium), les fibres intrafusales (constituant les fuseaux neuromusculaires) et les cellules satellites (permettant la réparation des fibres).
- Les fibres extrafusales du muscle squelettique (volontaire) sont divisées en deux grands types : fibre à contraction lente et rapide :
- Type I, contraction lente, est densément relié à des capillaires sanguins, très riche en mitochondries et en myoglobine (donne au tissu sa coloration rouge). Elle utilise donc beaucoup d'oxygène pour ses activités aérobiques (béta-oxydation ou cycle de Krebs). Les fibres lentes se contractent pendant longtemps mais avec peu d'intensité (souvent présentes en grande quantité dans les muscles posturaux).
- Type II, contraction rapide, à trois majeurs sous types (IIa, IIx, et IIb) qui varient en vitesse de contraction et en force générée. Ces fibres se contractent rapidement et intensément mais fatigue très rapidement, notamment à cause de leur activité anaérobique. Elles constituent la majorité de la force musculaire et ont un potentiel de développement accru. Les types IIb sont anaérobiques, utilisent majoritairement la glycolyse, et apparaissent « blanche » car moins dense en mitochondries et myoglobine. Dans les animaux de petites tailles (rat, poulet) c'est la principale fibre musculaire expliquant la couleur pâle de leur chair (viande blanche).
- Le muscle lisse ou « muscle involontaire », se trouve dans les parois des organes et des structures telles que l’œsophage, l'estomac, les intestins, les bronches, l'utérus, l'urètre, la vessie, les vaisseaux sanguins, et les muscles érecteurs du poil. Contrairement au muscle squelettique, le muscle lisse n'est pas sous le contrôle conscient et la cellule de ce muscle se nomme le lëiomyocyte.
- Le muscle cardiaque (myocarde), ou « muscle autonome », proche de la structure du muscle squelettique et se retrouve uniquement dans le cœur. La cellule musculaire typique du cœur est le cardiomyocyte contractile. On retrouve aussi des cellules particulières, les cardionectrices (responsable du côté autonome du cœur, possédant un rythme de contraction autonome) et les myoendocrines (sécrétion endocrine).
Les muscles cardiaques et squelettiques sont dits « striés » car ils contiennent des unités structurelles particulières, les sarcomères, qui sont arrangés en faisceaux de façon très régulière ; les myofibrilles des cellules musculaires lisses ne sont pas disposées sous forme de sarcomères et n'apparaissent donc pas striées en microscopie optique.
Alors que les sarcomères dans les muscles squelettiques s'organisent en faisceaux parallèles, ceux du muscle cardiaque se connectent par des ramification en X. Les muscles striés se contractent et se relâchent sur une courte distance mais de façon intense et rapide, tandis que les muscles lisses soutiennent des contractions plus ou moins forte de manière plus ou moins permanente.
La densité des muscles squelettiques pour les mammifères est d'environ 1,06 kg/litre (densité du tissu adipeux (graisse) est 0,9196 kg/litre). Le tissu musculaire est 15 % plus dense que le tissu adipeux.
Embryologie
Tous les muscles dérivent du mésoderme paraxial. Le mésoderme paraxial est divisée le long de l'embryon en somites, correspondant à un phénomène de segmentation du corps (retrouvé de façon plus évidente avec la colonne vertébrale). Chaque somite possèdent 3 sous-divisions, le sclérotome (qui forme les vertèbres), le dermatome (qui forme la peau), et le myotome (qui forme les muscles). Le myotome est divisé en deux sections, l'épimère et hypomère, qui forment respectivement les domaines épaxiaux (ou paraxiaux) et hypaxiaux . Les domaines épaxiaux chez l'homme permettent la formation des muscles érecteurs du rachis et des petits muscles intervertébraux, et sont innervés par la ramification dorsale des nerfs spinaux. Tous les autres muscles proviennent des domaines hypaxiaux et sont inervés par la ramification ventrale des nerfs rachidiens (=nerfs spinaux).
Au cours du développement les myoblastes (cellules progénitrices musculaires) peuvent rester dans les somites pour former les muscles associés à la colonne vertébrale (épaxial), ou bien migrer dans le corps pour former tous les autres muscles (hypaxial). La migration des myoblastes est précédés par la formation du tissu conjonctif, généralement issu du mésoderme latéral. Les myoblastes suivent des signaux chimiques pour rejoindre leur emplacement approprié, puis fusionnent ensemble pour former les cellules des musculaires squelettiques (formation par syncytium).
Description du muscle strié squelettique
Les muscles striés squelettiques (MSS) sont revêtus d'un tissu conjonctif (TC) dense appelé l'épimysium. L'épimysium ancre le tissu musculaire aux tendons, à chaque extrémité du muscle. Il protège également les muscles du frottement (contre d'autres muscles ou l'os). L'épimysium englobe de multiples faisceaux, contenant eux-mêmes 10 à 100 fibres musculaires. Les faisceaux sont eux recouvert de périmysium qui permet le passage des nerfs et de la circulation sanguine. Chaque fibres musculaires (correspondant aux cellules musculaires, le myocyte) est enfermée dans son propre TC, l'endomysium (TC lâche).
En résumé, le muscle est composé de fibres (cellules) qui sont groupés en faisceaux, qui sont eux-mêmes regroupés pour former le muscle. À chaque niveau de regroupement une membrane de collagène (tissu conjonctif) entoure le paquet. Notons que ces membranes sont liées au tissu musculaire par des complexes protéiques (dystrophine, costamères) et sont résistantes à l'étirement.
Pour finir, dispersés à travers le muscle on retrouve les fuseaux neuromusculaires (ou fibres intrafusales) qui fournissent de la rétroaction sensorielle pour système nerveux central (sensible au niveau d'étirement du muscle, rôle dans le réflexe myotatique).
Dans les cellules du muscle (ou fibres musculaires ou myofibre) on retrouve des myofibrilles, qui eux-mêmes sont des faisceaux de protéines filamenteuses (actine). Le terme « myofibrille » ne doit pas être confondu avec le terme « myofibre », qui est simplement un autre nom pour la cellule musculaire. Les myofibrilles sont une association complexe de filaments protéiques organisés en unités répétitives appelé sarcomères. L'aspect strié des muscles squelettiques et cardiaques résulte de la présence de ces sarcomères à l'intérieur des cellules. Bien que ces deux types de muscle contiennent des sarcomères, les fibres du muscle cardiaque sont généralement ramifiées pour former un réseau et interconnectées par des disques intercalés, donnant au tissu l'apparence d'un syncytium (ce n'en est pas un à proprement parler).
Les deux filaments caractéristiques du sarcomère sont l'actine et la myosine.
Physiologie
Les trois types de muscle (squelettiques, cardiaques et lisses) comportent d'importantes différences. Toutefois, tous trois utilisent le mouvement des fibres d'actine associées à de la myosine afin de créer une contraction. Dans le muscle squelettique, la contraction est stimulée par des potentiels d'actions transmis par des nerfs particuliers, les motoneurones (nerfs moteurs). Muscle cardiaque et lisse ont leur contraction stimulée par des cellules stimulatrices interne à l'organe (se contractant spontanément de façon régulière), et avec une propagation de l'ordre de contraction de proche en proche (canaux ionique entre cellules). Tous les muscles squelettiques et beaucoup de muscles lisses ont leur contraction régulée par un neurotransmetteur : l'acétylcholine.
Fonction
L'action qu'un muscle génère est déterminée par sa localisation et celle de ses insertions. La section transversale d'un muscle (plus que sa longueur) détermine la quantité de force qu'il peut générer en définissant le nombre de sarcomères qui peuvent fonctionner en parallèle. Chaque muscle squelettique contient de longues unités appelées myofibrilles, et chaque myofibrille est une chaîne de sarcomères. Puisque la contraction se produit en même temps pour tous les sarcomères connectés, ces chaînes de sarcomères raccourcissent ensemble, et ce raccourcissement de la fibre musculaire entraîne un changement de longueur de la myofibrille[6].
La consommation énergétique
L'activité musculaire consomme la majeure partie de l'énergie (sans oublier que le cerveau compte lui pour 1/3). Toutes les cellules musculaires produisent de l'adénosine triphosphate (ATP), ces molécules énergétiques sont utilisées pour le mouvement des têtes de myosine. Les muscles peuvent stocker de l'énergie pour une utilisation rapide sous la forme de phosphocréatine (qui est généré à partir d'ATP et qui peut régénérer cet ATP si nécessaire grâce à la créatine kinase). Les muscles peuvent aussi stocker du glucose sous forme de glycogène (comme le foie). Ce glycogène peut être rapidement converti en glucose pour poursuivre les contractions musculaires. Au sein du muscle à contraction volontaire (muscles squelettiques), la molécule de glucose peut être métabolisé par voie anaérobie dans un processus appelé la glycolyse qui produit 2 ATP et 2 acides lactiques (à noter que dans des conditions aérobies, le lactate n'est pas formé; au lieu on produit du pyruvate servant de substrat pour le cycle de Krebs). Chez les sportifs de haut niveau, les cellules musculaires contiennent également des globules de graisse à proximité, utilisés pendant l'exercice aérobie. La production d'énergie dans des conditions aérobie prend plus de temps et nécessite beaucoup d'étapes biochimiques, mais en contrepartie produit beaucoup plus d'ATP que la glycolyse anaérobie. Le muscle cardiaque peut facilement utiliser l'un des trois macronutriments (protéine, glucose et lipide) en aérobie rapidement et avec un rendement d'ATP maximal. Le cœur, le foie et les globules rouges peuvent réutiliser l'acide lactique (produit par les muscles squelettiques pendant l'exercice physique intense) dans leur propre métabolisme.
Au repos, le muscle squelettique consomme 54,4 kJ/kg (13,0 kcal/kg) par jour. Ces valeurs sont bien supérieures au tissu adipeux 18,8 kJ/kg (de 4,5 kcal/kg) et à l'os 9,6 kJ/kg (2,3 kcal/kg).
Maladies
Les maladies neuromusculaires (regroupant toutes les maladies) sont celles qui affectent les muscles et/ou leur contrôle nerveux. En général, les problèmes nerveux peuvent causer des spasmes ou un paralysie (mortel si elle touche un muscle respiratoire). Une grande proportion de troubles neurologiques, allant de l'accident vasculaire cérébral (AVC) à la maladie de Parkinson en passant par celle de Creutzfeldt–Jakob, peuvent conduire à des problèmes du mouvement ou de coordination motrice.
Les symptômes de maladie musculaire peuvent inclure une faiblesse musculaire, la spasticité, des myoclonies et des myalgies. Les procédures pour diagnostiquer ces maladies sont les tests de niveau de créatine kinase dans le sang et l'électromyographie (mesure de l'activité électrique dans les muscles). Dans certains cas, une biopsie musculaire peut être faite pour identifier la myopathie, ainsi que les tests génétiques pour identifier les anomalies de l'ADN associées à ces myopathies et ces dystrophies.
Une élastographie non-invasive permet de mesurer le « bruit » du muscle pour surveiller une maladie neuromusculaire. Le son produit par le muscle provient du raccourcissement des myofibrilles le long de l'axe du muscle. Au cours de la contraction le muscle se raccourcit, produisant des vibrations à la surface de ce dernier.
En France le Téléthon permet de recueillir des fonds sur la base des dons pour la recherche sur les myopathies.
Anatomie chez l'Homme
- Muscles faciaux (Anglais)
- Muscles des yeux
- Muscle temporal droit
- Muscles du cou (vue latérale)
- Muscle du cou (vue ventrale)
- Muscles du dos (Voir description de l'image pour la légende)
- Muscles de l'abdomen (Antérieur)
- Muscles profonds bras (Anglais)
- Muscles pectoraux et du bras superficiels
- Muscles pectoraux et du bras profonds
- Muscles du bras superficiels (Antérieur)
- Muscles du bras profonds (Antérieur)
- Muscles du bras superficiels (Postérieur)
- Muscles du bras profonds (Postérieur)
- Muscles de la main palmaire (Anglais)
- Muscles de la cuisse (Antérieur)
- Muscles de la jambe et du genou (Postérieur)
- Muscles du pieds (Supérieur)
Anatomie dans le règne animal
- Muscles et ligaments chez le cheval
- Muscles chez le chien (description de l'image pour la légende)
- Muscles chez le chat
Références
- « Mécanismes de l'audition - Génie Acoustique© - Bureau d'études acoustique et vibrations », sur www.genie-acoustique.com (consulté le 15 janvier 2018)
- Colin Mackenzie, The Action of Muscles: Including Muscle Rest and Muscle Re-education, England, Paul B. Hoeber, (lire en ligne), p. 1
- Jean Brainard, Niamh Gray-Wilson, Jessica Harwood, Corliss Karasov, Dors Kraus et Jane Willan, CK-12 Life Science Honors for Middle School, CK-12 Foundation, (lire en ligne), p. 451
- Alfred Carey Carpenter, « Muscle », Anatomy Words, sur Anatomy Words, (consulté le 3 octobre 2012)
- Douglas Harper, « Muscle », Online Etymology Dictionary, (consulté le 3 octobre 2012)
- Kenneth Kardong, Vertebrates: Comparative Anatomy, Function, Evolution, New York, NY, McGraw Hill Education, , 374–377 p. (ISBN 978-1-259-25375-1)
Liens externes
- University of Dundee article on performing neurological examinations (Quadriceps "strongest")
- Muscle efficiency in rowing
- Muscle Physiology and Modeling Scholarpedia Tsianos and Loeb (2013)
- Human Muscle Tutorial (clear pictures of main human muscles and their Latin names, good for orientation)
- Microscopic stains of skeletal and cardiac muscular fibers to show striations. Note the differences in myofibrilar arrangements.
- Portail de la biologie
- Portail de la physiologie