Homéomorphisme
En topologie, un homéomorphisme est une application bijective continue, d'un espace topologique dans un autre, dont la bijection réciproque est continue. Dans ce cas, les deux espaces topologiques sont dits homéomorphes.
Cet article concerne l'homéomorphisme en topologie. Pour l'homéomorphisme en théorie des graphes, voir Homéomorphisme de graphes.
La notion d'homéomorphisme est la bonne notion pour dire que deux espaces topologiques sont « le même » vu différemment. C'est la raison pour laquelle les homéomorphismes sont les isomorphismes de la catégorie des espaces topologiques.
Propriétés
- Une bijection continue est un homéomorphisme si et seulement si elle est ouverte ou fermée (elle est alors les deux).
- Soient K un espace topologique compact, E un espace topologique séparé, et f : K → E une bijection continue. Alors f est un homéomorphisme. En particulier, E est un compact.En effet, tout fermé F de K est compact ; comme E est séparé, l'image de F par f est compacte, a fortiori fermée dans E. Donc, f est une bijection continue fermée, i.e. un homéomorphisme par le point précédent.
- Une bijection continue n'est pas toujours un homéomorphisme (voir l'article Comparaison de topologies). Par exemple, l'application
est une bijection continue mais sa réciproque n'est pas continue en (1, 0). En fait, il n'existe aucun homéomorphisme entre le cercle S1 et une partie de ℝ (par des arguments de connexité ou de simple connexité).
Définitions associées
Une application f : X → Y est un homéomorphisme local (en) si tout point de X appartient à un ouvert V tel que f(V) soit ouvert dans Y et que f donne, par restriction, un homéomorphisme de V sur f(V). Une telle application est continue et ouverte.
- Exemples
- Tout revêtement est un homéomorphisme local.
- Pour tout ouvert X de Y, l'inclusion X → Y est un homéomorphisme local.
- Toute composée X → Z d'homéomorphismes locaux X → Y et Y → Z est un homéomorphisme local.
- Toute réunion disjointe ∐i∈IXi → Y d'homéomorphismes locaux Xi → Y est un homéomorphisme local.
- Tout quotient X/~ → Y d'un homéomorphisme local X → Y par une relation d'équivalence ~ compatible et ouverte est un homéomorphisme local.[réf. souhaitée] (Cf. la « droite réelle avec un point double ».)
- Tout difféomorphisme local d'une variété dans une autre est un homéomorphisme local.
Une propriété topologique est une propriété qui est invariante par homéomorphismes.
Exemples
- Tout difféomorphisme est un homéomorphisme.
- La sphère de Riemann privée de son pôle nord est homéomorphe au plan[1] : un homéomorphisme est ici la projection stéréographique.
- Le tore de dimension 1 et le cercle unité[1] (ou tout autre cercle de rayon non nul) sont homéomorphes.
Référence
- Jacques Dixmier, Topologie générale, Paris, PUF, , 164 p. (ISBN 2-13-036647-3, OCLC 417477300), paragraphes 2.5 p. 31 et 4.2.16 p. 55.
Voir aussi
Articles connexes
Lien externe
Homéomorphisme du plan sur un carré : animation sur GeoGebra accompagnée d'un exercice
- Portail des mathématiques