Convergence de variables aléatoires

Dans la théorie des probabilités, il existe différentes notions de convergence de variables aléatoires. La convergence (dans un des sens décrits ci-dessous) de suites de variables aléatoires est un concept important de la théorie des probabilités utilisé notamment en statistique et dans l'étude des processus stochastiques. Par exemple, la moyenne de n variables aléatoires indépendantes et identiquement distribuées converge presque sûrement vers l'espérance commune de ces variables aléatoires (si celle-ci existe). Ce résultat est connu sous le nom de loi forte des grands nombres.

Dans cet article, on suppose que (Xn) est une suite de variables aléatoires réelles, que X est une variable aléatoire réelle, et que toutes ces variables sont définies sur un même espace probabilisé .

Convergence en loi

Soient F1, F2, ... la suite des fonctions de répartition associées aux variables aléatoires réelles X1, X2, ..., et F la fonction de répartition de la variable aléatoire réelle X. Autrement dit, Fn est définie par Fn(x) = P(Xnx), et F par F(x) = P(Xx).

La suite Xn converge vers X en loi, ou en distribution, si

pour tout réel aF est continue.

Puisque F(a) = P(Xa), cela signifie que la probabilité que X appartienne à un certain intervalle est très proche de la probabilité que Xn soit dans cet intervalle pour n suffisamment grand. La convergence en loi est souvent notée

ou encore

La convergence en loi est la forme la plus faible au sens où, en général, elle n'implique pas les autres formes de convergence définies ci-dessous, alors que ces autres formes de convergence impliquent la convergence en loi. C'est ce type de convergence qui est utilisé dans le théorème central limite.

De manière équivalente, la suite (Xn) converge en loi vers X si et seulement si pour toute fonction continue bornée

Théorème de continuité de Lévy  Soit φn(t) la fonction caractéristique de Xn et φ(t) celle de X. Alors

.

Autrement dit, (Xn) converge en loi vers X si et seulement si la fonction caractéristique de la variable aléatoire réelle Xn converge simplement vers la fonction caractéristique de la variable aléatoire réelle X.

Exemple : théorème central limite :

La moyenne d'une suite de variables aléatoires centrées et de carré intégrable, indépendantes et de même loi, une fois renormalisée par n converge en loi vers la loi normale

Exemple : convergence de la loi de Student :

La loi de Student de paramètre k converge, lorsque k tend vers +∞, vers la loi de Gauss :

Dans ce cas, on peut aussi utiliser le lemme de Scheffé, qui est un critère de convergence d'une suite de variables aléatoires à densité vers une variable aléatoire à densité.

Exemple : loi dégénérée :

La suite[1] converge en loi vers une variable aléatoire X0 dite dégénérée, qui prend une seule valeur (0) avec probabilité 1 (on parle parfois de masse de Dirac en 0, notée δ0) :

Convergence en probabilité

Définition   Soit (Xn)n une suite de variables aléatoires réelles définies sur un même espace de probabilité . On dit que Xn converge vers X en probabilité si

On note parfois

ou encore

Lemme   Si l'on a les convergences suivantes, respectivement dans (E,d) et dans

alors on a

dans l'espace E × E muni de la distance infinie.

Propriété   Si Xn converge vers X en probabilité alors Xn converge vers X en loi.

Théorème de Slutsky  Si Xn converge en loi vers X, et si Yn converge en probabilité vers une constante c, alors le couple (Xn ,Yn) converge en loi vers le couple (X,c).

Convergence presque sûre

Définition   On dit que Xn converge presque sûrement vers X si

ou de manière équivalente, s'il existe un sous-ensemble -négligeable N ⊂ Ω tel que

On parle aussi de convergence presque partout ou avec probabilité 1 ou forte, et on écrit

ou, en anglais (pour almost surely)

La convergence presque sûre se réécrit sous la forme :

ou encore

Théorème   Si Xn converge vers X presque sûrement alors Xn converge vers X en probabilité.

La convergence presque sûre est utilisée dans la loi forte des grands nombres.

Convergence en moyenne d'ordre r

Définition   Soient r > 0 et (Xn)n une suite de variables aléatoires réelles définies sur un même espace de probabilité . On dit que Xn converge vers X en moyenne d'ordre r ou en norme Lr si pour tout n et si

On note parfois .

Pour r = 1, on parle simplement de convergence en moyenne et pour r = 2 de convergence en moyenne quadratique.

Propriété   Pour r > s ≥ 1, la convergence en norme implique la convergence en norme .

Pour r =2, on a le résultat suivant :

Propriété   Soit c une constante réelle. On a alors

si et seulement si

Propriété   Si Xn converge vers X en norme Lr, alors Xn converge vers X en probabilité.

Exemple :

La loi faible des grands nombres est une conséquence directe de ces deux dernières propriétés

Convergence d'une fonction d'une variable aléatoire

Un théorème très pratique, désigné en anglais généralement sous le nom de mapping theorem (en), établit qu'une fonction g continue appliquée à une variable qui converge vers X convergera vers g(X) pour tous les modes de convergence :

Théorème  (Mapping theorem[2]) Soit une fonction continue en tout point d'un ensemble C tel que  :

  • Si  ;
  • Si  ;
  • Si .
Exemple :

En statistiques, un estimateur convergent de la variance σ2 est donné par :

.

On sait alors par le continuous mapping theorem que l'estimateur de l'écart type σ = σ2 est convergent, car la fonction racine est une fonction continue.

Implications réciproques

Pour récapituler, on a ainsi la chaîne d'implication entre les différentes notions de convergence de variables aléatoires :

La convergence en probabilité n'implique ni la convergence dans , ni la convergence presque sûre, comme le montre l'exemple suivant :

Exemple :

Soit r > 0. On considère (Xn)n ≥ 1 une suite de variables aléatoires indépendantes telle que

La suite (Xn)n converge en probabilité vers 0 car

En revanche, elle ne converge pas dans car

Montrons qu'elle ne converge pas non plus presque sûrement. Si c'était le cas sa limite presque sûre serait nécessairement sa limite en probabilité, à savoir 0. Or, comme et comme les variables aléatoires Xn sont indépendantes, on a par la loi du zéro-un de Borel :

i.e. presque sûrement Xn = n1/r pour une infinité de n. Donc, presque sûrement, A fortiori Xn ne converge pas presque sûrement vers 0.

Exemple :

Dans l'exemple précédent, pour éviter le recours à la loi du zéro-un de Borel, on peut définir explicitement la suite Xn de la façon suivante. On choisit Ω = [0 ; 1] muni de sa tribu borélienne et de la mesure de Lebesgue. On pose , pour , puis

Enfin on définit

Les Xn ainsi définis ne sont pas indépendants mais ils vérifient comme dans l'exemple précédent

À quelques exceptions près, ces implications n'ont pas de réciproque, à proprement parler. Voici toutefois quelques propriétés utiles qu'on pourrait qualifier de « semblants de réciproques » :

  • Si Xn converge en loi vers une constante réelle c, alors Xn converge en probabilité vers c.
  • Si Xn converge en probabilité vers X, alors il existe une sous suite qui converge presque sûrement vers X.
  • Si Xn converge en probabilité vers X, et si pour tout n et un certain b, alors Xn converge en moyenne d'ordre r vers X pour tout r ≥ 1. Plus généralement, si Xn converge en probabilité vers X, et si la famille (Xp
    n
    ) est uniformément intégrable, alors Xn converge en moyenne d'ordre p vers X.
  • Si pour tout ε > 0,

alors Xn converge presque sûrement vers X. En d'autres termes, si Xn converge en probabilité vers X suffisamment rapidement (i.e. la série ci-dessus converge pour tout ε > 0), alors Xn converge aussi presque sûrement vers X. Cela résulte d'une application directe du théorème de Borel-Cantelli.

  • Soit (Xn)n ≥ 1 une suite de variables aléatoires réelles indépendantes. Pour tout n, on pose :

. Alors la convergence presque sûre de la suite (Sn)n ≥ 1 équivaut à sa convergence en probabilité ; autrement dit, la convergence presque sûre de la série de terme général Xn équivaut à sa convergence en probabilité.

Notes et références

  1. Pour plus de détail sur cet exemple, voir Davidson et McKinnon 1993, chap. 4.
  2. Vaart 1998, p. 7.

Bibliographie

  • (en) Russell Davidson et James McKinnon (trad. de l'allemand), Estimation and Inference in Econometrics, New York, Oxford University Press, , 874 p. (ISBN 978-0-19-506011-9, LCCN 92012048), p. 874
  • (en) G. R. Grimmett et D. R. Stirzaker, Probability and Random Processes, Oxford, Clarendon Press, , 2e éd. (ISBN 0-19-853665-8), p. 271-285
  • (en) Adrianus Willem van der Vaart (trad. de l'allemand), Asymptotic Statistics, Cambridge, Cambridge University Press, , 1re éd., 443 p., relié (ISBN 978-0-521-49603-2, LCCN 98015176), p. 443

Liens externes

  •  : cours de l’école centrale de Paris de 1e année sur la convergence des variables aléatoires


  • Portail des probabilités et de la statistique
Cet article est issu de Wikipedia. Le texte est sous licence Creative Commons - Attribution - Partage dans les Mêmes. Des conditions supplémentaires peuvent s'appliquer aux fichiers multimédias.