Centrifugation

La centrifugation est un procédé de séparation des composés d'un mélange en fonction de leur différence de densité en les soumettant à une force centrifuge. Le mélange à séparer peut être constitué soit de deux phases liquides, soit de particules solides en suspension dans un fluide. L'appareil utilisé est une machine tournante à grande vitesse appelée centrifugeuse. Cette technique ne fait pas partie des opérations unitaires en génie des procédés.

Une proposition de fusion est en cours entre Centrifugeuse et Centrifugation. Les avis sur cette proposition sont rassemblés dans une section de Wikipédia:Pages à fusionner. Les modifications majeures apportées, entre temps, aux articles doivent être commentées sur la même page.

Étymologie

Le mot centrifugation est construit à partir du verbe « centrifuger » qui vient du latin fugere qui signifie « fuir » et de « centre », auquel est ajouté le suffixe -ation indiquant une action, un effet physique.

Principe

La séparation des composés d'un mélange est réalisable par décantation, sous l'action de la seule gravitation mais elle nécessite parfois une longue durée pour acquérir de bons résultats et est donc souvent inefficace. Il est donc plus efficace d'utiliser la centrifugation[1]. Au cours de cette opération de séparation, les composés dans le fluide situés à une distance r de l'axe de rotation sont soumis à différentes forces[2] :

La séparation s'opère par l'action de la force centrifuge Fc sur les composés. Cette force centrifuge, exprimée en newtons, est donnée par la relation Fc = mγc avec γc = rω² en m/s² dont :

  • La masse m du composé à séparer
  • La distance r du tube à l'axe de rotation de la centrifugeuse
  • La vitesse angulaire ω exprimée en radians par seconde ou en tour par minute.

Le rapport de la force centrifuge Fc sur le poids Fp est appelé intensité de la pesanteur artificielle et s'exprime en « g »[3]. Les valeurs utilisées en centrifugation sont d'environ 400 à 10 000 g, ce qui correspond à des vitesses de rotation de l'ordre de 2 000 à 10 000 tr/min suivant le rayon des rotors[4].

La centrifugation fait appel à la force centrifuge exercée sur les particules incluses dans la solution, afin de ségréguer certaines composantes. Cette séparation s’effectue selon la densité des particules. La force exercée par l’accélération à haute vitesse de la solution à séparer est régie par la loi de Stokes :

Cette loi permet de calculer la vitesse de sédimentation des particules. Dans cette équation, la composante vs est la vitesse de sédimentation, r est le rayon de la particule en solution, Δρ est la différence de densité entre la particule et le milieu où la particule est contenue, g est l’accélération due à la force centrifuge dans la centrifugeuse, η est la viscosité de la solution[5].

Applications

La centrifugation est utilisée dans trois principaux domaines :

En biologie

Certaines applications, comme la séparation des macromolécules biologiques (protéines, acides nucléiques), nécessitent de passer par la méthode d'ultracentrifugation mise au point par Theodor Svedberg, qui utilise des accélérations très élevées de l'ordre de 200 000 g, et qui nécessite de ce fait des vitesses de rotations de plusieurs dizaines de milliers de tours par minute[8].

Pour l'enrichissement de l’uranium

L’un des usages les plus connus de la centrifugation est l’enrichissement de l’uranium. Étant donné que l’uranium à l’état de minéral contient moins d'un pour cent d'uranium 235, l’isotope fissile, il est nécessaire de le séparer de son isotope stable, l’uranium 238. La légère différence en masse des deux isotopes, due aux trois neutrons supplémentaires de l'uranium 238, permet une séparation par centrifugation. Tout d’abord, l’uranium est transformé en hexafluorure d’uranium, un composé de l’uranium qui est gazeux à une température légèrement plus élevée que la température ambiante. L’hexafluorure d’uranium est ensuite soumis à une centrifugation, durant laquelle l’isotope plus léger de l’uranium a tendance à se diffuser vers le centre de la centrifugeuse. A contrario, l’isotope plus lourd a tendance à se diffuser vers les parois de la centrifugeuse. Un conduit au centre de la centrifuge et un autre sur les parois extraient donc l’hexafluorure respectivement appauvri et enrichi. Ce procédé est répété en cascade jusqu’à ce qu’un degré de pureté désiré soit atteint concernant la concentration d’isotope fissile par rapport à l’isotope non-fissile[5].

Notes et références

  1. Bernard Veynachter et Pascal Pottier, Centrifugation et décantation, Techniques de l'ingénieur, F2730, mars 2007
  2. Kane Sternheim, Physique, 1984, InterÉditions (ISBN 2-7296-0098-1) p. 330
  3. Michel Robatel et Philippe Borel, Centrifugation, généralités. Théorie. Techniques de l'ingénieur, A5550, Mai 1989
  4. M. Seguin, B.Villeneuve, B.Marcheterre, R.Gagnon, Physique 1 Mécanique, Besson, 4e édition, p. 434.
  5. (en) Kirk, Raymond E. Encyclopedia of Chemical Technology, 4e édition, New York: Wiley, 1991.
  6. Jean Lemerle, « Centrifugation », sur Encyclopædia Universalis (consulté le )
  7. 50 millions de consommateurs, no 288, octobre 1995.
  8. Jean Lemerle, L'ultracentrifugation et ses applications en chimie minérale, L'Actualité chimique, p. 3-28, Paris, mars 1974.

Articles connexes

  • Portail de la chimie
  • Portail de la physique
  • Portail du nucléaire
Cet article est issu de Wikipedia. Le texte est sous licence Creative Commons - Attribution - Partage dans les Mêmes. Des conditions supplémentaires peuvent s'appliquer aux fichiers multimédias.