< Dérivation
fin de la boite de navigation du chapitre

Dans ce chapitre nous définirons la dérivée d'une fonction à étudier qui jouera un rôle important dans l'étude du sens de variation de la fonction consernée. Nous établirons ensuite les dérivées des fonctions de référence.

Définition de la fonction dérivée

Nous poserons simplement la définition suivante :

Dérivée d'une fonction

Soit une fonction. On appelle dérivée de , que l'on notera , la fonction qui à tout réel du domaine de définition de associe le nombre dérivée en . Autrement dit :

Le nombre dérivée n'étant pas nécessairement défini pour tout point, nous voyons que le domaine de définition de la fonction dérivée n'est pas forcément égal au domaine de définition de .

Nous désignerons le domaine de définition de par l'expression domaine de dérivabilité.


Dérivées des fonctions de référence


Fonction constante

Soit une fonction définie par :

étant un réel donné.

Nous avons alors :


Fonction identité

Soit une fonction définie par :

Nous avons alors :


Fonction carré

Soit une fonction définie par :

Nous avons alors :


Fonction cube

Soit une fonction définie par :

Nous avons alors :


Fonction inverse

Soit une fonction définie par :

Nous avons alors :


Fonction racine carré

Soit une fonction définie par :

Nous avons alors :


Fonction puissance

Soit une fonction définie par :

Pour calculer la dérivée de cette fonction, nous aurons besoin de l'identité remarquable :

Pour établir cette identité, il nous suffit de développer le second membre :

Si est différent de , on peut alors écrire :

En se basant sur les puissances, nous voyons qu'il y a termes dans le second membre.

En posant et , nous obtenons :

Nous avons alors :


Dérivée successives

Comme nous le verrons plus loin, la fonction dérivée nous facilite l'étude de la fonction . Mais nous pouvons aussi être amenés à étudier la fonction dérivée elle-même. Et pour facilité cette étude, nous utiliserons la dérivée de la fonction dérivée. Nous donnerons donc la définition suivante :

Fonction dérivée seconde

Soit une fonction et soit sa fonction dérivée. On appelle dérivée seconde la fonction noté et définie par :

Autrement dit, la fonction dérivée seconde de la fonction est la dérivée de la dérivée de .

Nous pouvons ainsi dérivée successivement et autant de fois que nécessaire les dérivées successives d'une fonction :

est la dérivée de

est la dérivée de

est la dérivée de

est la dérivée de


Dérivée et continuité

Nous avons le théorème suivant :

Théorème

Soit une fonction dont le domaine de dérivabilité est .

Alors est continue sur

Fin du théorème
Cet article est issu de Wikiversity. Le texte est sous licence Creative Commons - Attribution - Partage dans les Mêmes. Des conditions supplémentaires peuvent s'appliquer aux fichiers multimédias.