Rhizosphère

La rhizosphère est la région du sol directement formée et influencée par les racines et les micro-organismes associés qui font partie du microbiote des végétaux. Cette zone est réduite à une ou deux dizaines de centimètres d'épaisseur sous des pelouses ou des prairies, mais elle est parfois beaucoup plus épaisse dans les forêts des zones tempérées.

A=Amibe digérant une bactérie BL= Bactérie à énergie limitée BU= Bactérie à énergie non limitée RC=Racine SR=Poils absorbants racinaires F=Mycélium d'un champignon N=Ver nématode

La rhizosphère est caractérisée par sa richesse en micro-organismes, et notamment en bactéries et champignons microscopiques qui se nourrissent de ces composés, ainsi que des débris issus des cellules végétales mortes.

Étymologie

Le mot rhizosphère a été introduit en 1904 par Lorenz Hiltner[1], bactériologiste spécialiste de microbiologie du sol et professeur d'agronomie au collège Technique de Munich[2]. « Rhizo » vient du grec rhiza signifiant racine. « Sphère » vient du latin sphaera (même sens), mot provenant lui-même du grec ancien sfaira (signifiant balle, ballon, ou globe). La sphère définit le champ d'influence du système racinaire. En raison du volume qu'elle occupe, par rapport au volume de la plante, la rhizosphère est aussi appelée la « moitié cachée » (the hidden half en anglais)[3].

Enjeux de connaissance et de protection

C'est un lieu d'intenses échanges entre le végétal et le substrat minéral[4], qui peut être affecté par le tassement du sol, un ennoiement durable, sa salinisation, son eutrophisation ou la pollution, ou encore par des phénomènes d'aridification.

C'est dans la rhizosphère que par le biais des racines, le végétal s'ancre dans le sol, y puise les ressources minérales (cations, anions) et l'eau qu'il utilise pour sa croissance et sa régulation thermique par le processus d'évapotranspiration. Une plante transpire ainsi chaque jour l'équivalent de 5 fois sa biomasse environ, soit près de 1 500 fois sa masse chaque année.

Elle joue un rôle important dans la résistance des sols à l'érosion, au gel, aux incendies, aux inondations, etc. De même pour la résilience de ces sols et des plantes cultivées (Les enjeux sont donc également agronomiques)[5],[6].

Activité de la rhizosphère

L'activité de la rhizosphère est conditionnée par la dynamique de la biomasse racinaire. Environ 30, 50 et 75 % de la biomasse racinaire totale se trouvent respectivement dans les 10, 20 et 40 premiers centimètres du sol[7]. Jusqu'à 30 % des composés photosynthétisés par la plante[8] y sont remis à la disposition des micro-organismes qui y vivent, par le biais d'un processus de rhizodéposition (sécrétion racinaire active, exsudation racinaire passive, rhizodépôts de types mucilages, lysats, gaz)[9].

Ces composés incluent une grande quantité d'acides organiques et de sucres, ainsi que des quantités plus limitées de composés organiques complexes. Ils sont transformés en biomasse microbienne ou ré-oxydés en CO2.

Les organismes vivants de la rhizosphère bénéficient de cette activité végétale, qui joue aussi un rôle dans la dissolution de près de 30 % du calcaire du substrat. Il faudrait déverser 500 litres d'acide chlorhydrique sur chaque mètre cube de sol pour obtenir un effet équivalent purement chimique à quoi?[10].

De nombreuses interactions, bénéfiques (symbioses) ou non, voire délétères (pathogénie) sont observées entre plantes, bactéries et champignons du sol, « dopant » l'activité biologique de ce sol. Parmi les interactions bénéfiques aux plantes, on peut citer les symbioses fixatrices d'azote, les associations avec les bactéries promotrices de croissance (PGPR) ou de santé (phénomène de suppression de maladie), ou les interactions avec les champignons mycorhizogènes (voir aussi la définition de la mycorhizosphère) ou jouant un rôle dans la défense des plantes. Les effets délétères sont souvent liés à l'action de bactéries ou champignons pathogènes. Ils peuvent aussi être lié à des phénomènes de parasitisme végétal (tels ceux induits par les Striga ou les Orobanches) ou d'allélopathie qui conduisent à l'impossibilité pour certains végétaux d'occuper le même espace de sol (effet d'inhibition de croissance de l'un des deux sur l'autre). rhizodéposition Les protozoaires et nématodes qui se nourrissent des bactéries sont aussi concentrés autour des racines. Ainsi, la plupart du cycle des nutriments et des phénomènes de prédation se déroule dans la zone immédiatement adjacente aux racines[11]. Siège d'une activité métabolique intense, d'échanges génétiques importants, la rhizosphère joue un rôle essentielle dans les processus de phytoremédiation.

Facteurs déterminant la richesse et l'activité de la rhizosphère

D'une façon générale, l’activité microbienne dans la rhizosphère est régie :

  • par des facteurs de l’environnement climatique, notamment humidité de l’air, température, radiation solaire, teneur en CO2 ;
  • par des facteurs de l’environnement édaphique, notamment : teneur du sol en eau et en oxygène, température du sol, teneur du sol en éléments assimilables par les plantes, présence de composés phytotoxiques[12].
  • par des échanges de « molécules signal entre les racines des plantes et les microorganismes qui leur sont associés » (champignons, bactéries, cyanobactéries...) mais quand il y a par exemple une symbiose associative entre les PGPR (Plant-Growth Promoting Rhizobacteria) et une plante, le rôle et l’importance de ces molécules est encore mal connu. Les signaux rhizosphériques influent sur l'expression génique (« épigénétique »). Ils sont souvent « phytobénéfiques » en améliorant par exemple l’architecture, la croissance et le fonctionnement du système racinaire [13].

Notes et références

  1. (en) Anton Hartmann, Michael Rothballer & Michael Schmid, « Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research », Plant and Soil, vol. 312, nos 1-2, , p. 7 (DOI 10.1007/s11104-007-9514-z)
  2. G.R. Gobran, W.W. Wenzel, E. Lombi, Trace Elements in the Rhizosphere. CRC Press 2001. Cité dans Microbial Health of the Rhizosphere (Researcher: Nikol Heckathorn ; Writer: Laura Reinhold ; Programmer: Tiffany White)
  3. Bowen et Roriva, 1991
  4. ANOUA, B., Jaillard, B., RUIZ, J., Bénet, J. C., & Cousin, B. (1997). Couplage entre transfert de matière et réactions chimiques dans un sol. Partie 2: Application à la modélisation des transferts de matière dans la rhizosphère. Entropie, 33(207), 13-24.
  5. Kraffczyk, I., Trolldenier, G., & Beringer, H. (1984). Soluble root exudates of maize: influence of potassium supply and rhizosphere microorganisms. Soil Biology and Biochemistry, 16(4), 315-322.
  6. Kodama, H., Nelson, S., Yang, A. F., & Kohyama, N. (1994). Mineralogy of rhizospheric and non-rhizospheric soils in corn fields. Clays and clay minerals, 42(6), 755-763.
  7. (en) Canadell, J., Jackson, RB., Ehleringer, J.R, Mooney, H.A., Sala, O.E., Schulze, E.D., 1996. Maximum rooting depth of vegetation types at global scale. Oecologia 108, 583-595
  8. (en) Philippe Hinsinger, A.G. Bengough., D. Vetterlein, I. M. Young, « Rhizosphere: biophysics, biogeochemistry and ecological relevance », Plant and Soil, vol. 321, nos 1-2, , p. 117-152 (DOI 10.1007/s11104-008-9885-9)
  9. (en) J. M. Lynch, J. M. Whipps, « Substrate flow in the rhizosphere », Plant and Soil, vol. 129, no 1, , p. 1-10
  10. Hinsinger, P.;Jaillard, B.;Arvieu, J.C. 1996, INRA, Département de Science du sol; Paris ;Le sol, un patrimoine menacé, le point scientifique
  11. Elaine R. Ingham, The Soil Food Web. National Ressources Conservation Service.
  12. Y. Dommergues, Mycorrhizes et fixation d’azote. O.R.S.T.O.M. avril 1978
  13. Combes-Meynet, É. (2010). Impact de signaux rhizosphériques sur l’expression de gènes phytobénéfiques chez les bactéries symbiotiques associatives (Doctoral dissertation, Lyon 1). (résumé)

Voir aussi

Articles connexes

  • Coiffe (botanique)
  • Sol (pédologie)
  • Racines
  • Humus
  • Biodiversité du sol
  • Édaphologie
  • Microbiote des végétaux
Cette section est vide, insuffisamment détaillée ou incomplète. Votre aide est la bienvenue ! Comment faire ?

Lien externe

Cette section est vide, insuffisamment détaillée ou incomplète. Votre aide est la bienvenue ! Comment faire ?

Bibliographie

  • Curl EA & Truelove B (1986) The rhizosphere ; Springer-Verlag.
  • Hinsinger P (2001) Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes : a review ; Plant and soil, 237(2), 173-195.
  • Lemanceau P & Heulin T (1998) La rhizosphère. Sol: interface fragile, 93-106.
  • Portail de l’agriculture et l’agronomie
  • Portail de la biologie
  • Portail de la protection des cultures
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.