Théorème des cinq points

En géométrie, le théorème des cinq points est un énoncé sur les coniques du plan, démontré initialement par Blaise Pascal[1]. Il assure que par cinq points trois à trois non alignés passe une unique conique propre. Ce théorème admet des versions dégénérées, par exemple, avec quatre conditions d'incidence et une de tangence : il existe une unique conique propre passant par quatre points trois à trois non alignés, et tangente en l'un de ces points à une droite prescrite ne contenant aucun des trois autres points ; ou encore, avec trois conditions d'incidence et deux de tangence : il existe une unique conique propre passant par trois points non alignés prescrits, et tangente en chacun des deux premiers points à une droite prescrite qui ne contient qu'un seul des trois points.

Logo du logiciel GeoGebra, figurant une ellipse déterminée par cinq points.

Le logiciel de géométrie dynamique GeoGebra permet de tracer la conique déterminée par cinq points non trois à trois alignés donnés ; le logo du logiciel est d'ailleurs une illustration de ce théorème.

Références

  1. Antoine Chambert-Loir, « Quand la géométrie devient tropicale », Pour la Science, no 492, .

Marcel Berger, Géométrie [détail des éditions] Paragraphe 16.1.4

  • Portail de la géométrie
Cet article est issu de Wikipedia. Le texte est sous licence Creative Commons - Attribution - Partage dans les Mêmes. Des conditions supplémentaires peuvent s'appliquer aux fichiers multimédias.