Théorème de Radó (fonctions harmoniques)

En mathématiques, le théorème de Radó sur les fonctions harmoniques, nommé d'après Tibor Radó, exprime qu'une « bonne » forme « sans trous » peut être déformée de façon lisse en un disque.

Pour les articles homonymes, voir Théorème de Rado.

Soit Ω un ouvert convexe du plan euclidien R2 dont la frontière ∂Ω est lisse et soit D le disque unité ouvert. Alors, tout homéomorphisme μ : ∂ D → ∂ Ω se prolonge de façon unique en une fonction harmonique u : D → Ω. De plus, u est un difféomorphisme.

Références

Articles connexes

  • Portail de l'analyse
Cet article est issu de Wikipedia. Le texte est sous licence Creative Commons - Attribution - Partage dans les Mêmes. Des conditions supplémentaires peuvent s'appliquer aux fichiers multimédias.