Test de Kolmogorov-Smirnov

En statistiques, le test de Kolmogorov-Smirnov est un test d'hypothèse utilisé pour déterminer si un échantillon suit bien une loi donnée connue par sa fonction de répartition continue, ou bien si deux échantillons suivent la même loi.

Pour les articles homonymes, voir Smirnov.

Principe

Ce test repose sur les propriétés des fonctions de répartition empiriques. Soit n variables iid définies sur un espace de probabilité , à valeurs dans , avec pour fonction de répartition F. La fonction de répartition empirique de l'échantillon est définie par :

est la fonction indicatrice de l'événement A.

Notons la variable aléatoire . On a la convergence suivante :

pour toute constante c > 0. Le terme α(c) vaut 0,05 pour c = 1,36.

Remarquons que la limite à droite ne dépend pas de F. Cela découle du fait que converge en loi vers un pont brownien changé de temps par l'inverse F−1 de F. La série α(c) se déduit des propriétés de ce dernier processus.

Il est ainsi facile de proposer un test d'hypothèse pour décider si un échantillon provient bien d'une loi donnée, ou si deux échantillons ont la même loi, lorsque leurs fonctions de répartitions sont continues.

On peut aussi considérer et .

Le test de Kolmogorov-Smirnov est par exemple utilisé pour tester la qualité d'un générateur de nombres aléatoires[1].

Mise en œuvre

  • ks.test avec R.
  • scipy.stats.kstest avec Python pour déterminer si un échantillon suit une loi donnée
  • scipy.stats.ks_2samp avec Python pour déterminer si deux échantillons suivent la même loi de distributions
  • ksmirnov avec Stata

Voir aussi

Références

  • (en) Galen R. Shorack et Jon A. Wellner, Empirical Processes With Applications to Statistics, Philadelphie, Society for Industrial & Applied Mathematics, , 998 p. (ISBN 978-0-89871-684-9 et 0-89871-684-5, LCCN 2009025143, lire en ligne).
  • (en) David Williams, Weighing the Odds: a Course in Probability and Statistics, Cambridge University Press, 2001, 548 p. (ISBN 0-521-80356-X).

Notes et références

  1. (en) Donald E. Knuth, The Art of Computer Programming, vol. 2, 3e éd., Addison-Wesley Professional, 784 p. (ISBN 0-201-89684-2), p. 48–55.

Liens externes

  • Portail des probabilités et de la statistique
Cet article est issu de Wikipedia. Le texte est sous licence Creative Commons - Attribution - Partage dans les Mêmes. Des conditions supplémentaires peuvent s'appliquer aux fichiers multimédias.