Congruences de Kummer

En mathématiques, les congruences de Kummer sont des congruences impliquant les nombres de Bernoulli, trouvées par Ernst Eduard Kummer en 1851 .

Kubota & Leopoldt (1964) ont utilisé les congruences de Kummer afin de définir la fonction zêta p-adique.

Enoncé

La forme la plus simple de la congruence de Kummer est la suivante :

p est un nombre premier, h et k sont des entiers positifs pairs n'étant pas divisible par p−1 le nombre Bh le h-ième nombre de Bernoulli.

Plus généralement, si h et k sont des entiers positifs pairs non divisible par p  1, alors

dès que

où φ(pa+1) est l'indicatrice d'Euler, évaluée en pa+1 avec a un entier positif. Si a = 0, on retrouve la première expression. Les deux côtés de l'égalité peuvent être interprétés comme des valeurs de la fonction zêta p-adique, les congruences de Kummer impliquant que la fonction zêta p-adique est continue sur les entiers négatifs, et peut donc être prolongée par continuité à tous les entiers p-adiques.

Article connexe

Références

  • Portail des mathématiques
Cet article est issu de Wikipedia. Le texte est sous licence Creative Commons - Attribution - Partage dans les Mêmes. Des conditions supplémentaires peuvent s'appliquer aux fichiers multimédias.