Silicium

Le silicium est l'élément chimique de numéro atomique 14, de symbole Si. Ce métalloïde tétravalent appartient au groupe 14 du tableau périodique. C'est l'élément le plus abondant dans la croûte terrestre après l'oxygène, soit 25,7 % de sa masse[8], mais il n'est comparativement présent qu'en relativement faible quantité dans la matière constituant le vivant. Il n'existe pas dans la nature à l'état de corps simple, mais sous forme de composés : sous forme de dioxyde de silicium (SiO2), d'origine biogénique (fabriqué par un organisme vivant comme les diatomées ou les radiolaires), on le trouve sous forme de silice amorphe (dans le sable), ou d'origine lithogénique lorsqu'il est sous la forme de silice minérale (le quartz, la cristobalite, etc.) ou d'autres silicates (dans les feldspaths, la kaolinite…).

Silicium

Morceau de wafer poli et bloc de silicium pur.
AluminiumSiliciumPhosphore
C
 
 
14
Si
 
               
               
                                   
                                   
                                                               
                                                               
   
                                           
Si
Ge
Tableau completTableau étendu
Position dans le tableau périodique
Symbole Si
Nom Silicium
Numéro atomique 14
Groupe 14
Période 3e période
Bloc Bloc p
Famille d'éléments Métalloïde
Configuration électronique [Ne] 3s2 3p2
Électrons par niveau d’énergie 2, 8, 4
Propriétés atomiques de l'élément
Masse atomique 28,0855 ± 0,0003 u[1]
Rayon atomique (calc) 110 pm (111 pm)
Rayon de covalence 111 ± 2 pm[2]
Rayon de van der Waals 210 pm
État d’oxydation +1, +2, +3, +4
Électronégativité (Pauling) 1,90
Oxyde amphotère
Énergies d’ionisation[3]
* 1re : 8,15168 eV* 8e : 303,54 eV
* 2e : 16,34584 eV* 9e : 351,12 eV
* 3e : 33,49302 eV* 10e : 401,37 eV
* 4e : 45,14181 eV* 11e : 476,36 eV
* 5e : 166,767 eV* 12e : 523,42 eV
* 6e : 205,27 eV* 13e : 2 437,63 eV
* 7e : 246,5 eV* 14e : 2 673,182 eV
Isotopes les plus stables
Iso AN Période MD Ed PD
MeV
28Si92,22 %stable avec 14 neutrons
29Si4,68 %stable avec 15 neutrons
30Si3,09 %stable avec 16 neutrons
31Si{syn.}2,6 heuresβ-1,4931P
32Si{syn.}172 ansβ-0,22432P
Propriétés physiques du corps simple
État ordinaire solide diamagnétique
Autres allotropes Silicène
Masse volumique 2,33 g·cm-3 (25 °C)[1]
Système cristallin Cubique diamant
Dureté 6,50
Couleur gris foncé
Point de fusion 1 414 °C[1]
Point d’ébullition 3 265 °C[1]
Énergie de fusion 50,55 kJ·mol-1
Énergie de vaporisation 384,22 kJ·mol-1
Volume molaire 12,06×10-6 m3·mol-1
Pression de vapeur 4,77 Pa
Vitesse du son 8 433 m·s-1 à 20 °C
Chaleur massique 700 J·kg-1·K-1
Conductivité électrique 2,52×10-4 S·m-1
Bande interdite à 300 K 1,12 eV
Conductivité thermique 148 W·m-1·K-1
Divers
No CAS 7440-21-3[5]
No ECHA 100.028.300
No CE 231-130-8
Précautions
SGH[6]
État pulvérulent :

Attention
H228 et P210
SIMDUT[7]

B4,
Transport[6]
État pulvérulent :
-
   1346   

Unités du SI & CNTP, sauf indication contraire.

Sous sa forme amorphe, la silice (SiO2) provenant généralement de la terre de diatomées, est utilisée depuis très longtemps comme composant essentiel du verre. Il a depuis le milieu du XXe siècle de nouveaux usages en électronique (transistor), pour la production de matériaux tels que les silicones ou, pour fabriquer des panneaux solaires photovoltaïques et en tant que biominéral, la silice amorphe est actuellement étudiée pour ses utilités en nanotechnologie[9].

Le nom dérive du latin silex, silicĭs qui signifie caillou ou silex[10],[11].

Confusion possible : en anglais, silicon désigne le silicium, silicone désigne le silicone et silica désigne la silice.

Isotopes

Il existe trois isotopes naturels du silicium, tous stables : 28Si (92,18 %), 29Si (4,71 %) et 30Si (3,12 %). Il existe également des isotopes artificiels, instables : 25Si, 26Si et 27Si qui sont émetteurs β+, ainsi que 31Si à 34Si qui sont émetteurs β-.

Corps simple

Poudre de silicium.
Échantillon monolithique de silicium (polycristallin)

Le silicium est solide dans les conditions normales de température et de pression, avec sous 1 atm un point de fusion de 1 414 °C et un point d'ébullition de 3 265 °C. Comme l'eau, il est plus dense à l'état liquide[12] qu'à l'état solide, contrairement à la plupart des autres substances. C'est par ailleurs un assez bon conducteur de la chaleur (conductivité thermique : 149 W m−1 K−1).
Sous forme cristalline, le silicium pur est gris avec des reflets métalliques bleutés. Comme le germanium, il est peu déformable et très cassant. Comme le carbone et le germanium, il cristallise dans le système cubique (structure diamant). Les cristaux de silicium sont gris à noirs, en forme d'aiguilles ou d'hexaèdres. Le silicium est semi-conducteur, sa conductivité électrique est très inférieure à celle des métaux.
Il existe deux autres allotropes du silicium : le silicyne où les atomes de silicium sont reliés en chaînes, et le silicène où ils forment des couches planes.
Le silicium existe aussi à l'état amorphe, sous la forme d'une poudre marron foncé.

Le silicium s'oxyde très vite à l'air pour former une couche de silice en surface, qui isole l'échantillon de l'oxygène et le protège d'une oxydation plus poussée (passivation) ; cette couche d'oxyde peut être éliminée par de l'acide fluorhydrique HF ou par abrasion thermique[Quoi ?]. Insoluble dans l'eau sauf à haute température, le silicium est attaqué par l'acide fluorhydrique HF ou par un mélange acide fluorhydrique/acide nitrique (HNO3) en fonction de la phase[Quoi ?].

Cristallographie

Maille élémentaire de type diamant du silicium.

Le silicium a une structure de type diamant (comme le germanium et la forme diamant du carbone), avec un paramètre de maille de 0,543 071 0 nm[13].

Histoire

Un des composés du silicium, la silice (dioxyde de silicium), était déjà connu dans l'Antiquité et a été considérée comme élément par les alchimistes puis les chimistes. La forte résistance de la silice et de ses nombreux composés (notamment les silicates) aux agents météoriques explique leur abondance dans les minéraux et qu'ils constituent l'élément caractéristique des roches les plus importantes (à l'exception des carbonates)[14].

Du silicium a été isolé pour la première fois en 1823 par Jöns Jacob Berzelius. Ce n'est qu'en 1854 que Henri Sainte-Claire Deville obtient du silicium cristallin.

Utilisations et applications

Synthèse des silicones

La synthèse des silicones représente également une utilisation importante du silicium (environ 40 % de la consommation). Ces polymères [(CH3)2SiO]n sont utilisés dans des mastics pour joint, des graisses résistantes à l'eau ou conductrices de la chaleur, les poudres lessivielles ou les shampoings conditionneurs, etc.

Semi-conducteur

Les propriétés de semi-conducteur du silicium ont permis la création de la deuxième génération de transistors, puis les circuits intégrés (les « puces »). C'est aujourd'hui encore l'un des éléments essentiels pour l'électronique, notamment grâce à la capacité technologique actuelle permettant d'obtenir du silicium pur à plus de 99,999 99 % (tirage Czochralski, zone fondue flottante).

Photovoltaïque

Cellule photovoltaïque en silicium.

En tant que semi-conducteur, le silicium est aussi l'élément principal utilisé pour la fabrication de cellules solaires photovoltaïques. Celles-ci sont alors montées en panneaux solaires pour la génération d'électricité.

Composants mécaniques

Le silicium présente à l'état pur des caractéristiques mécaniques élevées qui le font utiliser pour la réalisation de petites pièces destinées à certains micromécanismes et même à la fabrication de ressorts spiraux destinés à des montres mécaniques haut de gamme[15].

Alliages aluminium-silicium

La principale utilisation du silicium en tant que corps simple est comme élément d'alliage avec l'aluminium. Les alliages aluminium-silicium (AS ou série 40000 suivant NF EN 1780-1, également appelés « sialumins ») sont utilisés pour l'élaboration de pièces moulées, en particulier pour l'automobile (par exemple jantes en alliage) et l'aéronautique (par exemple éléments de moteurs électriques embarqués). Les alliages aluminium-silicium représentent à peu près 55 % de la consommation mondiale de silicium. L'alliage le plus connu est l'Alpax, proche de la composition eutectique (env. 13 %m de Si).

Micro et nanostructure

Du fait de la performance des procédés de gravure et de formation de forme avec le silicium, le silicium est utilisé pour :

  • la formation de silicium nanoporeux pour dissocier l'hydrogène de l'oxygène de molécule d'eau dans les piles à combustibles ;
  • la formation de nanopics sur une surface de silicium par Gravure Ionique Réactive (RIE) en vue de relier des puces de semi-conducteur[16].

Composés

Outre les propriétés du silicium élémentaire, de nombreux composés du silicium possèdent des applications. Parmi les plus connus :

  • la silice se trouve dans la nature sous forme compacte (galets, quartz filonien par exemple), ou sous forme de sable plus ou moins fin. On l'obtient aussi industriellement, sous forme pulvérulente (silice synthétique). Elle a de nombreux usages :
    • le verre est fabriqué depuis des millénaires en faisant fondre du sable principalement composé de SiO2 avec du carbonate de calcium CaCO3 et du carbonate de sodium Na2CO3. Le verre peut être amélioré par différents additifs,
    • le sable de silice est un des composants des céramiques,
    • le quartz forme de superbes cristaux. Il est utilisé comme matériau transparent, plus résistant à la chaleur que le verre (ampoule de lampes halogènes). Il est également beaucoup plus difficile à fondre et à travailler,
    • la silice intervient aux côtés du noir de carbone dans la fabrication des pneumatiques économes en énergie (pneus « verts »),
    • la silice très fine est utilisée comme adjuvant pour les bétons à haute performance ;
  • le ferrosilicium et le silico-calcium sont utilisés comme éléments d'addition dans l'élaboration d'aciers ou de fontes ;
  • le carbure de silicium possède une structure cristalline analogue à celle du diamant ; sa dureté en est très proche. Il est utilisé comme abrasif ou sous forme céramique dans les outils d'usinage ;
  • le silicate de calcium CaSiO3 est un des composants des ciments.

Datation

Le silicium 32 peut être utilisé en datation radiométrique pour déterminer des âges de l'ordre du siècle[17].

Dans la nature

Après l'oxygène, c'est l'élément le plus abondant dans la croûte terrestre.

Minéraux

Le silicium sur Terre se trouve essentiellement sous forme minérale, et en particulier sous forme de silicates, qui constituent 28 % de la croûte terrestre. Le silicium est par exemple constitutif du sable de silice, résultat de la dégradation de roches comme le granite.

Molécules organiques

Le silicium se trouve dans certaines molécules organiques, comme les silanes — méthylsilanetriols, diméthylsilanediol —, les silatranes.

Biologie du silicium[18],[19]

Les diatomées et les radiolaires, présents dans le plancton qui est au tout début de la chaîne alimentaire des mers et des océans, participent au cycle biogéochimique du silicium. Ils extraient la silice de l'eau de mer pour former leur squelette externe. L'eau de mer est relativement pauvre en silice sauf dans les grandes profondeurs (dissolution des squelettes des diatomées) et au voisinage des estuaires. Il ne remonte à la surface qu'à la faveur des upwellings (remontées d'eau). Il y a alors une production importante de plancton. Mais la source la plus renouvelée de silice dans les océans se trouve dissoute dans l'eau des fleuves qui s'y jettent, mais aussi dans leurs limons. Elle a été arrachée aux massifs montagneux et aux terrains traversés par l'eau des sources, des torrents et des rivières. C'est d'ailleurs dans l'estuaire des fleuves que l'on trouve le plus de poissons. Comme ils se trouvent en haut de la chaîne alimentaire marine, il faut considérer que c'est parce qu'ils trouvent là du plancton en quantité. Il faut donc s'interroger sur les quantités importantes de limon piégé au fond des barrages dans les bassins des fleuves dans le monde entier. Cela pourrait bien retentir sur le stock actuel des poissons dans les océans qui est en forte décroissance[20],[21].

L'organisme humain contient de l'ordre de 7 g de silicium.

Le silicium se retrouve associé aux glycosaminoglycanes et aux polyuronides : chondroïtine sulfate, dermatan-sulfate, kératan-sulfate, héparan-sulfate et héparine. Il est aussi impliqué dans la synthèse du collagène (3 à 6 atomes de Si par chaine alpha) et de l'élastine. L'aorte se trouve être le tissu qui en contient le plus avec la peau et le thymus. Le taux de silicium dans ces tissus diminue avec l'âge dans des proportions très importantes : perte de l'ordre de 80-90 % (étude chez le lapin)[réf. nécessaire]. La diminution du silicium dans les parois artérielles est corrélée avec la fragmentation de l'élastine et à la perte de son élasticité. Plus une artère est athéroscléreuse moins elle contient de silice et plus elle est rigide[réf. nécessaire].

Un régime riche en cholestérol provoque une athérosclérose expérimentale chez le lapin. L'administration de silicium organique prévient la fragmentation des fibres d'élastine[réf. nécessaire]. Un tuyau rigide conduit moins bien un débit qu'un tuyau souple. La restauration de l'élasticité artérielle  la compliance  aiderait sans aucun doute à diminuer l'hypertension artérielle[22],[23].

Le silicium est impliqué dans la fixation du calcium (Ca) au niveau du squelette. La bordure ostéoïde, zone où se fabrique l'os, présente un pic de concentration en silicium qui ne se retrouve pas dans l'os mature. Le silicium potentialise l'action du Zinc (Zn) et du Cuivre (Cu).

Le silicium participe au fonctionnement du système immunitaire[réf. nécessaire]. Le thymus qui en contient des quantités importantes est l'organe où se « programment » les lymphocytes T. Il faut aussi signaler que les macrophages ont un très grand appétit pour elle et recyclent la silice[réf. nécessaire] localement en excès (poumons par exemple). Il est également impliqué dans la synthèse des anticorps (immunoglobulines).

Pour certains, notre réserve de silicium diminuerait drastiquement avec l'âge. En fait, il existe surtout une modification de la répartition du silicium dans l'organisme : certains tissus voient leur taux baisser drastiquement (peau, artères, thymus, cartilages, etc.), d'autres « s'empoussièrent » de façon importante comme les poumons et les ganglions qui leur sont associés du fait de leur grande richesse en macrophages. Si le bilan du silicium total en fonction de l'âge pourrait bien s'équilibrer en termes de quantité, la disponibilité effective pour les métabolismes semble bien diminuer avec l'âge. Ceci est à mettre en rapport avec l'insuffisance d'apport alimentaire et la carence progressive de l'organisme en molécules organiques qui contiennent des motifs « ène-diol »[réf. nécessaire]. Ceux-ci modifient la valence du silicium et forment avec lui des complexes hyper-valents (penta- ou hexa-) de forte importance biologique. Parmi ces molécules les polyphénols (antioxydants), certains neuro-médiateurs issus du métabolisme de la tyrosine (adrénaline, dopamine) ou du tryptophane (sérotonine, mélatonine), et surtout l'acide ascorbique (vitamine C). Il n'est donc pas certain que les apports alimentaires quotidiens soient couverts dans toutes les tranches de population, en particulier celles qui ont des besoins accrus ou des carences dues à une alimentation peu diversifiée et pauvre en fruits et légumes et autres aliments riches en polyphénols antioxydants (enfants en croissance, femmes enceintes, vieillards) ou personnes qui ont des besoins accrus. Ainsi les accidents musculo-squelettiques sont fort nombreux chez les sportifs (entorses, tendinites, claquages, micro-fractures, etc.). Ces accidents mettent en cause des structures anatomiques comme l'os où le silicium est un facteur primordial de sa synthèse ou d'autres, comme les tendons, les ligaments ou les muscles, qui contiennent des quantités importantes de silicium (élastine, collagène). L'application par voie externe d'un gel contenant des complexes organiques à base de méthylsilanetriol qui traversent la barrière cutanée, est d'un grand intérêt thérapeutique[24][source insuffisante].

Dans la nature, le "silicium organique" se forme à la surface de la silice sous l'action d'éléments liés aux racines des végétaux pour leur permettre de l'assimiler. Certaines plantes comme la prêle, le bambou, l'ortie, l'avoine qui contiennent des quantités importantes de silicium sont très utilisées en phytothérapie et en cosmétologie (ortie, avoine). Le séchage inconsidéré de ces plantes annihile une partie des effets bénéfiques car la silice polymérise. D'autres plantes utilisées en alimentation humaine comme le riz, le blé, la pomme (pectine), etc. en contiennent également des quantités notables, surtout dans les enveloppes, d'où l'intérêt de consommer du riz ou blé complet. Certaines eaux minérales, le vin, la bière surtout peuvent aussi être considérées comme des sources notables. L'Afssa (Agence française de sécurité sanitaire des aliments) n'a pas défini d'apports nutritionnels conseillés pour le silicium. Les besoins sont généralement considérés comme largement couverts par l'alimentation, sans qu'aucune étude vraiment sérieuse avalise cette assertion.

Le terme de « silicium organique » est approprié quand des chimistes ajoutent un (ou plusieurs) atome(s) de carbone sur un atome de silicium, ce qui donne par exemple un monométhylsilanetriol ou un diméthylsilanediol. L'association contrôlée d'une molécule organique appropriée (un salicylate par exemple) au monométhylsilanetriol forme un complexe doté de propriétés intéressantes, comme la possibilité de traverser en profondeur le revêtement cutané. Ce genre de complexes est très utilisé en cosmétologie comme anti-rides par comblement inter-cellulaire et effet tenseur. Cela est dû à une synthèse favorisée du collagène et de l'élastine[réf. nécessaire]. Pour le silicium organique commercialisé sous l’appellation G5 par exemple, il s'agit d'un silanol de formule CH3-Si(OH)3.

Un tel complexe a aussi été utilisé en thérapeutique humaine sous le nom de spécialité de Conjonctyl, avec comme indication les ischémies circulatoires (cérébrales, coronaires, mésentériques, des membres), les ostéoporoses, les mastodynies et mastoses, ainsi que les états d'asthénie physique et/ou psychique du vieillard. Seulement l'Autorisation de Mise sur le Marché (AMM) pour ces indications a été retirée, faute pour le laboratoire producteur de pouvoir produire des preuves cliniques récentes, évaluées scientifiquement[25]. Le Conjonctyl a récemment été ré-autorisé en tant que dispositif médical par injection intradermique pour le comblement des dépressions cutanées (rides, cicatrices)[26].

Biochimie du silicium[27]

Il a été évoqué la possibilité d'une toute autre forme de vie basée principalement sur le silicium et non pas le carbone. Ceci pourrait se fonder sur le fait que le silicium est non seulement tétravalent comme le carbone, mais qu'il est susceptible de former des complexes penta- et hexa-coordinés chargés et stables. Ceux-ci pourraient avoir des propriétés catalytiques intéressantes qui ont été peu explorées dans les hypothèses exobiologiques.
Toutefois il faut remarquer l'extrême difficulté du silicium à former des liaisons multiples qui sont nécessaires au fonctionnement des échanges dans la cellule. Les exemples de molécules de silicium présentant des liaisons multiples ou des valences différentes de IV sont possibles uniquement avec des substituants particulièrement complexes. Un moment donné [Quand ?] des recherches [Lesquelles ?] de médicaments contenant du silicium ont été menées et finalement n'ont apporté aucun avantage[réf. nécessaire].

Certains scientifiques[Lesquels ?] croient devoir conclure par la négative à ce genre de proposition. Selon eux, le silicium ne participerait que peu à des réactions biologiques mais servirait plutôt de support (enveloppes, squelettes, gels). Cependant, le silicium se trouve étroitement associé à l'ADN, à l'intérieur du noyau des cellules donc, pour une fonction qui reste à identifier. Il existe aussi une enzyme dans la paroi des mitochondries qui participe au transport du silicium vers l'intérieur de celles-ci et pourrait être associé au cycle de Krebs.[réf. nécessaire]

Enfin, les arguments définitifs qui peuvent remettre en cause la possibilité de l'existence de forme de vie basée sur le silicium sont d'une part l'abondance relative du carbone dans l'univers qui est très largement supérieure à celle du silicium[28] et d'autre part, l'inertie chimique de la silice SiO2, solide, comparativement à la labilité du dioxyde de carbone CO2, gazeux[29].

L'hypothèse d'une vie basée sur du silicium apparaît dans un épisode de Star Trek ( TOS, Les mines de Horta ) et dans un roman de Philip K. Dick, Nick et le Glimmung[30].

Production industrielle du silicium

Le silicium n'existe pas naturellement à l'état libre sur la Terre, mais il est très abondant sous forme d'oxydes, par exemple la silice ou les silicates. Le silicium est extrait de son oxyde par des procédés métallurgiques, et son niveau de pureté dépend de son utilisation finale.

Pureté du silicium

Barreau de silicium de qualité solaire.

On distingue trois niveaux de pureté du silicium, désignés en fonction de l'utilisation :

  • silicium métallurgique (pureté 99 %), noté MG-silicium (en anglais : metallurgical grade) ;
  • silicium de qualité solaire (pureté 99,999 9 %), noté SoG-silicium (solar grade) ;
  • silicium de qualité électronique (pureté 99,999 999 99 %), noté EG-silicium (electronic grade).

Production du silicium métallurgique

Pour obtenir du silicium libre (parfois appelé improprement « silicium métal » pour le distinguer du ferrosilicium), il faut le réduire ; industriellement, cette réduction s'effectue par électrométallurgie, dans un four à arc électrique ouvert dont la puissance peut aller jusqu'à environ 35 MW. La réaction globale de principe est une réaction carbothermique :

SiO2 + C ⟶ Si + CO2.

La réalité est plus complexe, avec des réactions intermédiaires conduisant par exemple à la formation de carbure de silicium SiC, de monoxyde de silicium SiO (instable).

En pratique, le silicium est introduit sous forme de morceaux de silice (galets, ou morceaux de quartz filonien), mélangé à des réducteurs tels que le bois, le charbon de bois, la houille, le coke de pétrole. Compte tenu des exigences de pureté des applications finales, la silice doit être relativement pure (faible teneur en oxyde de fer en particulier), et les réducteurs soigneusement choisis (houille lavée par exemple).

Le mélange est déversé dans un creuset de plusieurs mètres de diamètre, où plongent des électrodes cylindriques en carbone (trois le plus souvent) qui apportent la puissance électrique et permettent d'atteindre les très hautes températures dont les réactions recherchées ont besoin (autour de 3 000 °C dans la région de l'arc électrique, à la pointe des électrodes).

Le silicium obtenu est recueilli dans des « poches », à l'état liquide, grâce à des orifices pratiqués dans le creuset: les trous de coulées. La coulée en silicium, à l'inverse du ferrosilicium, est une coulée continue.

Il est ensuite affiné dans ces poches, par injection d'air et d'oxygène pour oxyder l'aluminium et le calcium.

Puis il est séparé du « laitier » (oxydes produits au cours des différentes étapes du procédé et entraînés avec le silicium) avant d'être solidifié :

  • soit par coulée en lingotières ou sur une surface plane ;
  • soit par granulation à l'eau (le silicium liquide est alors versé dans de l'eau et les gouttes de silicium se solidifient en petits granules : opération relativement délicate).

Les réactions intermédiaires conduisant à la réduction du silicium produisent aussi une très fine poussière de silice amorphe, qui est entrainée par les gaz chauds (essentiellement air et dioxyde de carbone) émis par le four ; dans les installations modernes, ces gaz sont filtrés pour recueillir cette poussière de silice amorphe, qui est utilisée comme élément d'addition dans les bétons à haute performance.

Selon les applications, le silicium est utilisé sous forme de morceaux (production des alliages aluminium-silicium) ou sous forme de poudre obtenue par broyage (production des silicones).

Le silicium pour électronique est obtenu à partir du silicium électrométallurgique, mais nécessite une étape chimique (purification réalisée sur des silanes) puis un ensemble de purifications physiques, avant le tirage des monocristaux.

Préparation du silicium pur

L'opération s'effectue à partir du trichlorosilane (SiHCI3), ou du tétrachlorure de silicium (SiCl4), ou du tétraiodure de silicium (SiI4), etc. Par exemple, en attaquant du siliciure de cuivre à 300 °C par de l'acide chlorhydrique il se forme du trichlorosilane ; ce corps est purifié par une distillation très poussée ; il est ensuite décomposé à 950 °C en présence d'hydrogène ; on obtient des blocs compacts de silicium très pur (procédé Pechiney).

Préparation du monocristal

Barreau de 302 g (10,3 cm de long et cm de diamètre) de silicium polycristallin destiné à la production de silicium monocristallin par le procédé de Czochralski.
Barre de silicium monocristal.

On désire obtenir des monocristaux de type N ; or le silicium obtenu chimiquement contient toujours quelques traces de bore et il est de type P ; on le cristallise donc et on le transforme en semi-conducteur de type N.

Principe

On place dans un creuset en quartz une quantité de silicium correspondant sensiblement au poids du monocristal à obtenir ; on ajoute le donneur d'électrons ; aucune impureté ne doit perturber la cristallisation ; l'opération doit donc se dérouler dans une enceinte hermétiquement close, d'une propreté « chirurgicale », et dans une atmosphère neutre, ou sous vide.

Réalisation

Autour de l'enceinte isolante en quartz est placé l'inducteur d'un générateur haute fréquence qui permet de porter le mélange Si-dopeur à la température de fusion, soit 1 500 °C environ. Lorsque la fusion est totale, l'opération de cristallisation peut commencer ; à cet effet, un système mécanique de précision présente le germe monocristal au contact du bain, puis le soulève verticalement, très lentement, tout en lui imprimant une très lente rotation qui aide à l'homogénéisation. Le germe entraîne le silicium qui se trouve alors soustrait à l'action de l'induction HF ; le Si se refroidit donc et cristallise suivant l'ordonnancement fixé par le germe.

L'opération est très délicate ; la vitesse de levage doit être constante afin de ne pas perturber la formation du cristal ; la température du bain doit être également constante, à 0,1 °C près (et ceci vers 1 500 °C). L'homogénéisation, aidée par les deux mouvements de levage et de rotation, est primordiale ; en effet, à mesure que l'opération progresse, le bain voit sa concentration en impuretés augmenter parce que ces dernières présentent plus d'affinité pour la phase liquide que pour la phase solide.

Le monocristal obtenu se présente sous la forme d'un cylindre à peu près régulier, pouvant atteindre 30 cm de diamètre[31] ; on le sectionne à ses deux extrémités : la tête, qui est très pure, servira de germe pour une opération ultérieure ; le bas, qui risque de ne pas être assez pur, est rejeté.

Préparation des galettes (wafers)

Du fait du prix très élevé du silicium monocristallin, il faut éviter la perte de matière pendant la préparation des galettes (wafers). Le cristal étant très fragile, il faut éviter toute contrainte pouvant les déformer ou les briser. Par ailleurs, l'état de surface des wafers doit être aussi parfait que possible et le traitement ne doit pas « polluer » le monocristal.

Tronçonnage
Wafer de silicium poli.

Le silicium est découpé en galettes (wafers) de 0,2 à 0,3 mm d'épaisseur au moyen d'une scie circulaire diamantée de grande précision. Le travail s'effectue dans l'eau afin d'éviter tout échauffement et toute pollution. Les déchets étant importants, les boues sont filtrées et la poudre de silicium est récupérée et utilisée à nouveau.

Rodage des faces

Il a pour but d'éliminer les irrégularités de surface provoquées par les grains de poudre de diamant lors du tronçonnage ; il s'effectue avec de la poudre de carbure de silicium. Après le rodage mécanique, un rodage chimique vient supprimer les dernières irrégularités sur la couche superficielle qui peut avoir été polluée. À cet effet, on utilise des bains d'acides (acides fluorhydrique et nitrique) ; puis les wafers sont rincées soigneusement et séchées. Cette attaque chimique peut être remplacée ou complétée par un polissage électrolytique.

Découpage des pastilles

On découpe les galettes (wafers) en un très grand nombre de pastilles, avec précision, la largeur du trait de découpe étant aussi faible que possible (0,125 à 0,15 mm). Les bavures de découpage sont ensuite éliminées par attaque chimique suivie d'un rinçage.

Notes et références

  1. (en) David R. Lide, CRC Handbook of Chemistry and Physics, CRC Press Inc, , 90e éd., 2804 p., Relié (ISBN 978-1-420-09084-0)
  2. (en) Beatriz Cordero, Verónica Gómez, Ana E. Platero-Prats, Marc Revés, Jorge Echeverría, Eduard Cremades, Flavia Barragán et Santiago Alvarez, « Covalent radii revisited », Dalton Transactions, , p. 2832 - 2838 (DOI 10.1039/b801115j)
  3. (en) David R. Lide, CRC Handbook of Chemistry and Physics, TF-CRC, , 87e éd. (ISBN 0849304873), p. 10-202
  4. (en) « Silicon », sur NIST/WebBook, consulté le 28 juin 2010
  5. Base de données Chemical Abstracts interrogée via SciFinder Web le 15 décembre 2009 (résultats de la recherche)
  6. Fiche Sigma-Aldrich du composé Silicon powder, 99.9995% trace metals basis, consultée le 23 août 2018.
  7. « Silicium » dans la base de données de produits chimiques Reptox de la CSST (organisme québécois responsable de la sécurité et de la santé au travail), consulté le 25 avril 2009
  8. WebElements Periodic Table of the Elements — Silicon
  9. (en) Kröger, N., and E. Brunner. 2014. Complex-shaped microbial biominerals for nanotechnology: Complex-shaped microbial biominerals for nanotechnology. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 6: 615–627.
  10. Jean-Louis Vigne, « Silicium », sur lelementarium.fr, Société Chimique de France & France Chimie (consulté le )
  11. Dictionnaire Gaffiot Latin-Français 1934, entrée silex, p. 1442.
  12. L'anomalie dilatométrique : l'eau, le silicium, le bismuth...etc...(site futura-sciences)
  13. (en) William C. O'Mara, Robert B. Herring et Lee P. Hunt, Handbook of semiconductor silicon technology, Park Ridge, N.J, Noyes Publications, , 795 p. (ISBN 978-0-8155-1237-0, OCLC 20825221), p. 349-352.
  14. Alexandre Fersman, La géochimie récréative, Éditions en langues étrangères, , p. 97
  15. Voir le document Les ressorts sur Wikibooks.
  16. Article de la Vigie Optoélectronique de l'Agence pour la Diffusion de l’Information Technologique (Adit), numéro 116, octobre 2006, Lire en ligne
  17. Étienne Roth (dir.), Bernard Poty (dir.), Robert Delmas et al. (préf. Jean Coulomb), Méthodes de datation par les phénomènes nucléaires naturels, Paris, Éditions Masson, coll. « Collection CEA », , 631 p. (ISBN 2-225-80674-8), chap. 17 (« Silicium 32 et argon 39 »)
  18. Birchall, J. D. (1990) The role of silicon in biology. Chemistry in Britain: 141-144.
  19. Biochemistry of Silicon and Related Problems, 40th Nobel Symposium (G. Bendz, I. Lindqvist Eds.) Plenum Press, New York (1978).
  20. Silicon Retention in River Basins : far-reaching effects on biogeochemistry and aquatic food webs in coastal marine environments] Humborg, C., Conley, D.J., Rahm, L., Wulff, F., Cociasu, A., Ittekkot, V. Ambio. 29:45-50 (2000)
  21. Effect of Danube River dam on Black Sea biogeochemistry and ecosystem structure. Christoph Humborg, Venugopalan Ittekkot, Adriana Cociasu, Bodo v. Bodungen. Nature 386: 385-388 (1997); doi:10.1038/386385a0
  22. Loeper J., Loeper J., Fragny M. The physiological role of the silicon and its antiatheromatous action in Biochemistry of Silicon and Related Problems, 40th Nobel Symposium (G. Bendz, I. Lindqvist Eds.) Plenum Press, New York (1978). (ISBN 0-306-33710-X)
  23. Fusako Maehira, Kyoko Motomura, Nau Ishimine, Ikuko Miyagi, Yukinori Eguchi, Shoei Teruya Soluble silica and coral sand suppress high blood pressure and improve the related aortic gene expressions in spontaneously hypertensive rats Nutrition Research 2011;31(2):147-156
  24. Journée Annuelle de Médecine Sportive - 3 juin 2004 - Pitié-Salpétrière - Paris, sur free.fr
  25. Conjonctyl. Artifice administratif. Prescrire 19:398 (1999), sur free.fr
  26. [PDF]Conjonctyl : rapport d'essai pour le comblement des rides du visage, sur gfelectromedics.it
  27. Silicon Biochemistry, in Ciba Foundation Symposium 121 (eds D. Evered and M. O'Connor) John Wiley & Sons (1986)
  28. (en) « Could Life be based on Silicon rather than Carbon? », sur NASA (consulté le )
  29. (en) Raymond Dessy, « Could silicon be the basis for alien life forms, just as carbon is on Earth? », sur Scientific American (consulté le )
  30. Dick, Philip Kindred, 1928-1982. et Pracontal, Mona de. (trad. de l'anglais), Le guérisseur de cathédrales : suivi de Nick et le Glimmung, Paris, J'ai lu, dl 2015, 314 p. (ISBN 978-2-290-03379-1 et 2-290-03379-0, OCLC 936564458, lire en ligne), chapitre 5, p235
  31. Chimie générale pour ingénieur, Claude K.W. Friedli, page 105, presses polytechniques et romandes, lien sur Google livres

Voir aussi

Articles connexes

Liens externes


  1 2                               3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1  H     He
2  Li Be   B C N O F Ne
3  Na Mg   Al Si P S Cl Ar
4  K Ca   Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
5  Rb Sr   Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
6  Cs Ba   La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
7  Fr Ra   Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
8  119 120 *    
  * 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142  


Métaux
  Alcalins  
  Alcalino-  
terreux
  Lanthanides     Métaux de  
transition
Métaux
  pauvres  
  Métal-  
loïdes
Non-
  métaux  
Halo-
  gènes  
Gaz
  nobles  
Éléments
  non classés  
Actinides
    Superactinides    
  • Portail de la physique
  • Portail des sciences des matériaux
  • Portail des minéraux et roches
  • Portail de la chimie
  • Portail de l’énergie
  • Portail de l’électricité et de l’électronique
Cet article est issu de Wikipedia. Le texte est sous licence Creative Commons - Attribution - Partage dans les Mêmes. Des conditions supplémentaires peuvent s'appliquer aux fichiers multimédias.