Rayonnement synchrotron

Le rayonnement synchrotron, ou rayonnement de courbure, est un rayonnement électromagnétique émis par une particule chargée qui se déplace dans un champ magnétique et dont la trajectoire est déviée par ce champ magnétique. Ce rayonnement est émis en particulier par des électrons qui tournent dans un anneau de stockage. Puisque ces particules modifient régulièrement leur course, leur vitesse change régulièrement, elles émettent alors de l'énergie (sous forme de photons) qui correspond à l’accélération subie.

Principe

D'après les équations de Maxwell, toute particule chargée se déplaçant de façon non uniforme (par exemple sur une trajectoire circulaire) émet un rayonnement électromagnétique[Lequel ?][Comment ?].

Accélérateurs de particules

Synchrotrons, synchrocyclotrons et cyclotrons réfèrent à différents types d'accélérateurs circulaires. Dans de tels accélérateurs, un champ électrique intense permet d'accélérer un faisceau de particules et un champ magnétique permet de dévier sa trajectoire. Dans le cas d'un synchrotron, ces particules sont généralement des électrons (plus rarement des positrons) et tournent à des vitesses relativistes[réf. nécessaire].

Utilisation

Ce rayonnement dépend de la vitesse des électrons, mais couvre une très large partie du spectre électromagnétique, de l'infrarouge aux rayons X durs. Il est alors possible soit d'utiliser une gamme spectrale étendue (spectroscopie infrarouge à transformée de Fourier, diffraction de Laüe), soit plus habituellement de monochromatiser ce faisceau blanc pour ne travailler qu'avec une bande très étroite de fréquences lumineuses. Dans le cadre de certaines expériences, absorption de rayons X EXAFS ou XANES par exemple, la possibilité de faire varier finement l'énergie du faisceau est un atout fondamental et permet de sonder précisément certaines transitions énergétiques.

Le rayonnement synchrotron est particulièrement brillant (intense et focalisé), il peut l'être 10000 fois plus que la lumière solaire. Dans la gamme des rayons X durs, la faible divergence du faisceau permet la mise en œuvre de méthodes de micro-imagerie, à l'échelle de quelques fractions de micromètre sur les lignes les plus performantes (comme celles de l'European Synchrotron Radiation Facility à Grenoble).

En outre, le rayonnement synchrotron est :

  • assez facilement calculable ;
  • très stable par rapport aux sources classiques ;
  • polarisé (anisotropie) ;
  • pulsé (observation de cinétiques ultra-rapides) ;
  • et permet de travailler en cohérence de phase (diffraction cohérente, imagerie de contraste de phase).

Applications

Les applications sont nombreuses :

  • en biologie (cristallographie de protéines, dichroïsme circulaire...) ;
  • en science des matériaux à vocation fondamentale ou appliquée (imagerie, diffraction) ;
  • en physique et en chimie fondamentale ;
  • en micro-fabrication (lithographie X profonde) ;
  • en médecine, les radiothérapies par rayonnement synchrotron constituent un domaine de recherche expérimentale actif[1].

Astronomie

Nébuleuse du Crabe : cette image est la combinaison de données optiques de Hubble (en rouge) et de rayons X de Chandra (en bleu). Les rayons X sont issus du rayonnement synchrotron d'électrons relativistes qui tournent dans le champ magnétique du pulsar central.

L'observation de ce rayonnement est essentiel en astrophysique, car de nombreux objets astrophysiques possèdent de puissants champs magnétiques. C'est à travers l'étude du rayonnement synchrotron qu'on peut par exemple comprendre la magnétosphère des pulsars.

Notes et références

  1. « Radiothérapie par rayonnement synchrotron », sur sciencedirect.com, (consulté le )

Articles connexes

  • Portail de la physique
Cet article est issu de Wikipedia. Le texte est sous licence Creative Commons - Attribution - Partage dans les Mêmes. Des conditions supplémentaires peuvent s'appliquer aux fichiers multimédias.