Potentiostat

Un potentiostat est un appareil électronique destiné à l'étude des phénomènes électrochimiques.

Histoire

Depuis 1942, lorsque Hickling a construit le premier potentiostat à trois électrodes, de nombreux progrès ont été réalisés pour améliorer les possibilités des potentiostats. Hickling a eu l'idée de contrôler automatiquement la tension d'une électrode au moyen d'une troisième électrode : l'électrode de référence. Le principe de fonctionnement d'un potentiostat demeure inchangé depuis.

Descriptif

En principe, on porte une électrode (électrode de travail) à un potentiel donné par rapport à une électrode de référence. L'électrode de travail est chimiquement inerte, elle ne réagit donc ni avec la solution, ni par application d'un potentiel. Par contre, des substances présentes en solution peuvent être oxydées ou réduites à la surface de l'électrode. Si une réaction redox se passe à la surface de l'électrode de travail, un courant circule entre la solution et l'électrode. Par définition, on compte un courant positif, si les électrons passent de la solution à l'électrode, donc la substance est oxydée. Inversement, on compte un courant négatif si la substance est réduite, les électrons passent alors de l'électrode dans la solution.

Pour maintenir l'électrode de travail à un potentiel constant, il faut éviter de faire passer un courant par l'électrode de référence (ce qui changerait son potentiel). Ceci nécessite une troisième électrode: l'électrode auxiliaire (appelée aussi contre électrode). Le courant circule alors entre l'électrode de travail et l'électrode auxiliaire, le potentiel est imposé entre l'électrode de travail et l'électrode de référence. Le générateur particulier permettant de maintenir automatiquement le potentiel de l'électrode de travail, même sous courant, est appelé potentiostat.

La solution contenant le produit à analyser et un électrolyte support est introduite dans la cellule de mesure. Un barbotage d'azote élimine l'oxygène qui pourrait être gênant. Le potentiostat est programmé pour balayer automatiquement le potentiel à une vitesse choisie, et le cyclovoltammogramme est enregistré directement par la table traçante.

Principe de fonctionnement

Dans son principe, un potentiostat mesure la différence de potentiel entre les électrodes de travail (ET) et de référence (Réf) d'une cellule à trois électrodes (Fig. 1), fait passer un courant dans la cellule par l'intermédiaire de la contre électrode (CE) et mesure le courant à l'aide de la chute ohmique aux bornes de la résistance .

L'amplificateur opérationnel AO sert à maintenir la différence de potentiel entre la référence et l'électrode de travail aussi proche que possible du potentiel d'entrée de la source . Il ajuste sa sortie pour contrôler automatiquement le courant dans la cellule de telle sorte que la différence de potentiel entre référence et travail soit aussi proche que possible de .

Fig. 1 : Schéma de principe d'un potentiostat.

Pour comprendre comment un potentiostat fonctionne il faut écrire quelques équations classiques d'électronique. Mais avant cela on peut remarquer que d'un point de vue électrique la cellule électrochimiques à trois électrodes et la résistance de mesure peuvent être considérés comme deux impédances (Fig. 2). L'impédance intègre en série avec l'impédance d'interface de la contre-électrode et la résistance de la portion d'électrolyte comprise entre la contre-électrode et l'électrode de référence. L'impédance représente l'impédance d'interface de l'électrode de travail en série avec la résistance de la portion d'électrolyte compris entre l'électrode de travail et celle de référence.

Fig. 2 : Schéma de fonctionnement d'un potentiostat.

Le rôle de l'amplificateur opérationnel (AO) est d'amplifier la différence qui existe entre l'entrée et l'entrée . Ce qui se traduit mathématiquement dans l'équation :

. (1)

est le gain de l'AO. Avant de continuer nous devons faire l'hypothèse qu'aucun courant, ou un courant insignifiant, traverse l'électrode de référence. Ceci correspond à la réalité puisque l'électrode de référence est connectée à un électromètre de haute impédance. Le courant dans la cellule électrochimique peut s'écrire de deux manières :

, (2)

et :

. (3)

Combiner les Eqs. (2) et (3) mène à l'équation (4) :

, (4)

est la fraction de la tension de sortie de l'AO retournée sur son entrée , c'est-à-dire le taux de contre-réaction (ou taux de rétroaction) :

. (5)

Des Eqs. (1) et (4) on tire :

. (6)

Lorsque la quantité est très grande par rapport à un, l'Eq. (6) se simplifie en :

, (7)

qui prouve que l'AO fonctionne afin de maintenir la différence de potentiel entre l'électrode de référence et celle de travail proche de la tension d'entrée.

Bibliographie

  • Bard, A.J.; Faulkner, L.R. Electrochemical Methods: Fundamentals and Applications. New York: John Wiley & Sons, 2nd Edition, 2000 (ISBN 0-471-40521-3).
  • Cynthia G. Zoski (Editor) Handbook of Electrochemistry. Elsevier, 2007 (ISBN 0-444-51958-0)
  • Peter T. Kissinger, William R. Heineman Laboratory Techniques in Electroanalytical Chemistry. CRC Press, 1996 (ISBN 0-8247-9445-1)
  • Douglas A. Skoog, F. James Holler, Timothy A. Nieman Principles of Instrumental Analysis. Harcourt Brace College Publishers, 1998 (ISBN 0-03-002078-6).
  • Hickling,(1942). "Studies in electrode polarisation. Part IV.-The automatic control of the potential of a working electrode". Transactions of the Faraday Society 38: 27–33. doi:10.1039/TF9423800027.

Notes et références

    Voir aussi

    Articles connexes

    • Portail de l’électricité et de l’électronique
    Cet article est issu de Wikipedia. Le texte est sous licence Creative Commons - Attribution - Partage dans les Mêmes. Des conditions supplémentaires peuvent s'appliquer aux fichiers multimédias.