Interleukine 17

L'interleukine 17 (IL-17 ou IL-17A) est une cytokine à l'origine de la famille de cytokines IL-17. IL-17A a été à l'origine identifiée comme un transcrit d'une cellule T hybridome chez un rongeur[1]. L'IL-17A est essentiellement produite par les lymphocytes T auxiliaires CD4. L'IL-17A agit sur les tissus à travers un récepteur, constitué par les sous-unités IL-17RA et IL-17RC, et induit la sécrétion de chimiokines comme l'interleukine 8, qui permettent le recrutement de neutrophiles[2].

Famille des cytokines de l'IL-17

La famille des cytokines de l'IL-17 comporte six membres appelés IL-17A, IL-17B, IL-17C, IL-17D, IL-17E et IL-17F. Ces cytokines ont en commun la présence de résidus cystéines particuliers. L'IL-17F a l'homologie en acides aminés la plus élevée avec l'IL-17A (50 %) alors que l'IL-17E a l'homologie la moins élevée (16 %)[3]. L'IL-17A et l'IL-17F sont produites par une sous-population de lymphocytes T auxiliaires appelés lymphocytes Th17 (par analogie avec les lymphocytes Th1 et Th2)[4],[5].

Il existe cinq récepteurs à l'IL-17 identifiés, nommés IL-17RA à IL-17RE[6].

Les IL-17 sont essentiellement produits par les lymphocytes T auxiliaire de type 17 (Th17)[7].

Rôle de l'IL-17A

Les souris déficientes pour l'IL-17A sont fertiles et n'ont pas de défaut majeur apparent, suggérant que cette cytokine n'a pas de rôle essentiel dans le développement. L'IL-17A semble plutôt avoir un rôle important au cours des infections par des bactéries extracellulaires comme Klebsiella pneumoniae, ou par des levures comme Candida albicans[8]. De même une anomalie du récepteur de cette cytokine entraîne une sensibilité accrue à ces infections[9]. Chez l'homme, plusieurs mutations génétiques conduisant à un défaut de production d'IL-17A ou un défaut de réponse à cette cytokine ont été identifiées. Ces mutations sont associées à une susceptibilité aux candidoses cutanéomuqueuses et, dans une moindre mesure, aux infections par Staphylococcus aureus[10]. Un rôle de l'IL-17A a été démontré dans les modèles murins expérimentaux de plusieurs pathologies auto-immunes (sclérose en plaques, arthrite rhumatoïde, psoriasis) et dans les maladies inflammatoires chroniques intestinales.

Cible thérapeutique

Plusieurs études cliniques basées sur l'utilisation d'anticorps monoclonaux bloquants cette cytokine, soit directement (comme le ixekizumab) ou par l'intermédiaire de son récepteur (comme le brodalumab), ont été réalisées ou sont actuellement en cours[11],[12]. le secukinumab est un autre anticorps monoclonal ciblant l'interleukine 17A.

Il existe une certaine efficacité à court terme sur le psoriasis[13],[14].

Toutefois, un taux bas d'interleukine 17 semble être corrélé avec un risque augmenté d'accidents cardiaques chez le patient ayant fait un infarctus[15], ce qui pose la question de la sécurité de ce type de traitement, même si ce risque est essentiellement théorique.

Notes et références

  1. (en) Rouvier E, Luciani MF, Mattéi MG, Denizot F, Golstein P CTLA-8, cloned from an activated T cell, bearing AU-rich messenger RNA instability sequences, and homologous to a herpesvirus saimiri gene. J Immunol. 1993 Jun 15;150(12):5445-56. 1993
  2. (en) Fossiez F, Djossou O, Chomarat P, et. al. T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J Exp Med. 1996 Jun 1;183(6):2593-603.
  3. (en) Iwakura Y, Ishigame H, Saijo S, Nakae S. Functional specialization of interleukin-17 family members. Immunity. 2011 Feb 25;34(2):149-62.
  4. (en) Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, Weaver CT. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol. 2005 Nov;6(11):1123-32.
  5. (en)Park H, Li Z, Yang XO, Chang SH, Nurieva R, Wang YH, Wang Y, Hood L, Zhu Z, Tian Q, Dong C. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol. 2005 Nov;6(11):1133-41.
  6. Gaffen SL, Recent advances in the IL-17 cytokine family, Curr Opin Immunol, 2011;23:613-619
  7. Roark CL, Simonian PL, Fontenot AP, Born WK, O'Brien RL, γδ T cells: an important source of IL-17, Curr Opin Immunol, 2008;20:353-357
  8. (en)Conti HR, Gaffen SL.Host responses to Candida albicans: Th17 cells and mucosal candidiasis. Microbes Infect. 2010 Jul;12(7):518-27.
  9. Ye P, Rodriguez FH, Kanaly S et al. Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense, J Exp Med, 2001;194:519-527
  10. (en)Puel A, Cypowyj S, Bustamante J, et. al. Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin-17 immunité. Science. 2011 Apr 1;332(6025):65-8.
  11. (en)http://clinicaltrials.gov/ct2/results?term=IL-17
  12. (en)van den Berg WB, Miossec P.IL-17 as a future therapeutic target for rheumatoid arthrites. Nat Rev Rheumatol. 2009 Oct;5(10):549-53
  13. Leonardi C, Matheson R, Zachariae C et al. Anti-interleukin-17 monoclonal antibody ixekizumab in chronic plaque psoriasis, N Engl J Med, 2012;366:1190-1199
  14. Papp KA, Leonardi C, Menter A et al. Brodalumab, an anti-interleukin-17-receptor antibody for psoriasis, N Engl J Med, 2012;366:1181-1189
  15. Simon T, Taleb S, Danchin N et al. Circulating levels of interleukin-17 and cardiovascular outcomes in patients with acute myocardial infarction, Eur Heart J, 2013;34:570-577
  • Portail de la biologie
  • Portail de la médecine
Cet article est issu de Wikipedia. Le texte est sous licence Creative Commons - Attribution - Partage dans les Mêmes. Des conditions supplémentaires peuvent s'appliquer aux fichiers multimédias.