Dynamique holomorphe


La dynamique holomorphe est un domaine de l'analyse complexe et des systèmes dynamiques s'intéressant principalement à l'étude de l'itération des applications holomorphes.

Historique

Un des fondateurs est le mathématicien polonais Lucjan Böttcher.

Dynamique holomorphe à une variable

L'étude de la dynamique des fonctions holomorphes à une variable est de loin la plus développée.

Afin d'établir les propriétés concernant la famille de fonctions itérées de la fonction holomorphe définie sur une surface de Riemann (c'est-à-dire une variété complexe de dimension un), elle s'appuie sur les résultats de l'analyse complexe (principe du maximum, théorème des résidus, théorème de Montel, théorie des fonctions univalentes…), de la topologie générale, de la géométrie complexe (théorème de l'application conforme et théorème d'uniformisation de Riemann, hyperbolicité, théorie des applications quasi-conformes et de la dynamique générale.

La dualité famille normale/comportement instable qui sépare le plan dynamique en deux sous-ensembles localement discriminés en est un des faits importants. Cette dualité apparait grâce à la classification des points périodiques de la fonction , c'est-à-dire les points du domaine de définition pour lesquels il existe un entier tel que .

Introduction aux ensembles de Julia

Prenons un polynôme à une variable complexe , c'est une fonction holomorphe sur (l'ensemble des nombres complexes). Alors, pour chaque point de départ dans l'ensemble des nombres complexes, on construit la suite des itérés définie par la formule de récurrence :

.

Une question naturelle est celle de la convergence de la suite , et plus généralement de son comportement (périodique, tendant vers l'infini…).

On peut s'attendre, justement, à ce que le comportement de la suite dépende de la valeur initiale .

Par exemple, il est facile de voir que pour le polynôme , si on prend une valeur initiale telle que , alors la suite , définie par la récurrence , tend vers l'infini (i.e. . De façon plus générale, on peut montrer que pour tout polynôme , il existe un rayon tel que si , alors la suite des itérés de issue de tend vers l'infini.

L'ensemble des points tels que la suite des itérés de issue de tend vers l'infini est appelé bassin d'attraction de l'infini. Son complémentaire, c'est-à-dire l'ensemble des valeurs initiales pour lesquelles la suite ne tend pas vers l'infini, est appelé ensemble de Julia rempli.

Pour la fonction de l'exemple précédent , l'ensemble de Julia rempli est le disque centré en zéro de rayon et son complémentaire le bassin de l'infini.

L'ensemble de Julia est alors le bord de l'ensemble de Julia rempli, c'est-à-dire sa frontière topologique.

Pour ce qui est de , son ensemble de Julia est simplement le cercle centré en zéro de rayon , cependant la « forme » des ensembles de Julia dépend évidemment de la fonction que l'on considère et est souvent bien plus complexe.

Autres exemples

Un autre exemple d'ensemble de Julia assez simple est celui du polynôme  : c'est l'intervalle .

Dans la plupart des cas les ensembles de Julia ne sont pas des variétés différentielles, comme les exemples d'ensembles de Julia connexes suivants (voir illustrations) :

  • le chou-fleur, ensemble de Julia du polynôme  ;
  • les lapins de Douady, dont le polynome quadratique offre un exemple ;
  • la dendrite ().

Certaines applications peuvent avoir comme ensemble de Julia des poussières de Cantor (par exemple, le polynôme ), des tapis de Sierpinsky, etc.

Comme les exemples qui précèdent, les ensembles de Julia de la plupart des applications holomorphes sont des fractales.

Caractérisation

Le complémentaire de l'ensemble de Julia d'une fonction holomorphe (ici un polynôme) est un ouvert , appelé ensemble de Fatou. Cet ouvert est caractérisé par le fait que la suite de fonctions , où désigne le ième itéré de la fonction (i.e. fois), admet, pour tout compact inclus dans , des sous-suites uniformément convergentes sur . On dit alors que forme une famille normale sur .

Voir aussi

  • Portail de l'analyse
Cet article est issu de Wikipedia. Le texte est sous licence Creative Commons - Attribution - Partage dans les Mêmes. Des conditions supplémentaires peuvent s'appliquer aux fichiers multimédias.