< Théorie des groupes < Exercices



Problème 1 (facile)

Si G est un groupe et H un sous-groupe (non forcément distingué) de G, on a vu qu'un sous-groupe K de G est appelé un complément de H (dans G) si H ∩ K = 1 et HK = G (d'où KH = G).
Soient p un nombre premier et G un groupe cyclique d'ordre p2. Soit H le sous-groupe d'ordre p de G. Prouver que H est un sous-groupe distingué de G qui n'a pas de complément dans G.

Problème 2 (facile)

Soient G un groupe fini, H un sous-groupe distingué de G et K un sous-groupe de G. On suppose que et que . Prouver que G est produit semi-direct de H par K.

Problème 3 (facile)

Soient a et b des nombres naturels premiers entre eux, G un groupe fini d'ordre ab. Si H est un sous-groupe distingué d'ordre a de G et K un sous-groupe d'ordre b de G, G est produit semi-direct de H par K.

Problème 4 (facile)

Soit n un nombre naturel ≥ 2, soit τ une transposition ∈ Sn. Prouver que Sn est produit semi-direct de An par le sous-groupe <τ>.

Problème 5 (facile)

Montrer que S3 et Z/6Z sont tous deux produits semi-directs d'un groupe d'ordre 3 par un groupe d'ordre 2. En conclure que si un groupe G1 est produit semi-direct d'un sous-groupe distingué H1 par un sous-groupe K1, si un groupe G2 est produit semi-direct d'un sous-groupe distingué H2 par un sous-groupe K2, si H1 est isomorphe à H2, si K1 est isomorphe à K2, G1 n’est pas forcément isomorphe à G2.

Problème 6

Soient G et Q des groupes, soit p un homomorphisme de G dans Q, soit s un homomorphisme section de p, c'est-à-dire un homomorphisme tel que p ∘ s = idQ. (L'existence d'une telle application s entraîne que p est surjectif.) Prouver que G est produit semi-direct de Ker(p) (noyau de p) par Im(s) (image de s, autrement dit s(Q)).

Cet exercice nous servira dans un exercice de la série Théorème de Gaschütz (démonstration de la forme faible du théorème de Schur-Zassenhaus).

Problème 7

Soient p et q des nombres premiers distincts, avec par exemple p > q. On va classifier les groupes d'ordre pq.

a) Soient H et N des groupes, soient et des homomorphismes injectifs de H dans Aut(N) tels que . Prouver que les deux actions correspondantes de H sur N par automorphismes sont quasi équivalentes (de sorte que ).

b) Dans les hypothèses ci-dessus sur p et q, soit G un groupe d'ordre pq. Prouver que G est le produit semi-direct (interne) d'un groupe d'ordre p par un groupe d'ordre q.

c) On suppose que p ≢ 1 (mod q). Prouver que les groupes d'ordre pq sont tous cycliques (et donc tous isomorphes entre eux).

d) On suppose maintenant que p ≡ 1 (mod q). Prouver qu'il existe des groupes d'ordre pq non cycliques et qu'ils sont tous isomorphes entre eux (de sorte que les groupes d'ordre pq se partagent en deux classes d'isomorphie). Prouver aussi que les groupes d'ordre pq non cycliques sont non abéliens. (Indication : pour prouver que les groupes d'ordre pq non cycliques sont isomorphes, on peut utiliser le point a).)

Problème 8

Soit G un groupe. On suppose que G = AB, où A est un sous-groupe normal de G et B un sous-groupe de G. (On ne suppose pas que A ⋂ B = 1, autrement dit que A est produit semi-direct de A par B.) Soit θ : b ↦ θb : a ↦ b a b-1 l'homomorphisme de B dans Aut(A) correspondant à l'action de B sur A par conjugaison. On désignera par A ⋊θ B le produit semi-direct externe de A par B relativement à θ.

a) Prouver que l’application f : (a, b) ↦ ab de A ⋊θ B dans G est un homomorphisme dont le noyau est l’ensemble des couples (c-1, c), où c parcourt A ⋂ B.

b) Prouver que G est isomorphe au quotient de A ⋊θ B par un sous-groupe normal N de A ⋊θ B possédant les propriétés suivantes :

1° N ⋂ (A × {1}) = 1;
2° N ⋂ ({1} × B) = 1;
3° N est isomorphe à A ⋂ B.

Remarque. Le point b) nous servira dans l'étude des groupes dicycliques.

Problème 9

Montrer que , muni de la loi définie par , est un groupe.

Cet article est issu de Wikiversity. Le texte est sous licence Creative Commons - Attribution - Partage dans les Mêmes. Des conditions supplémentaires peuvent s'appliquer aux fichiers multimédias.