Site (mathématiques)
Un site est une catégorie équipée d'une (pré)-topologie de Grothendieck. En ce sens, un site généralise la notion d'espace topologique et de locale.
Cette topologie permet de définir des faisceaux sur la catégorie.
Terminologie
On distingue parfois petits sites, définis comme ci-dessus, et gros sites construits comme la catégorie au-dessus d'un objet d'un petit site. Une catégorie de faisceaux sur un site forme un topos de Grothendieck, et on distingue petits et gros topoi. D'après le théorème de Giraud, tout topos peut être construit ainsi. Pour des raisons techniques, on travaille presque toujours avec des petites catégories ; lorsque ce n'est pas le cas on parle de site large.
Chaque topologie de Grothendieck donne lieu à une notion de site, et on a, pour des topologies de plus en plus grossières des (petits et gros) sites fpqc, fppf (en), syntomiques (en), cristallins, étales, de Nisnevich, de Zariski.
Construction des faisceaux
Soit C une catégorie, un pré-faisceau sur C est un foncteur de la catégorie opposée (en) dans la catégorie des ensembles :
Si C est un site, il est muni d'une topologie qui à tout objet U de C associe les recouvrements . Alors est un faisceau si, pour toute famille de morphismes , l'application induite par les et notée est bijective.
La sous-catégorie pleine (qui est en outre réflexive) de la catégorie de foncteurs dont les objets sont des faisceaux pour la topologie J est noté . Il s'agit d'un topos de Grothendieck.
- Portail des mathématiques