Théorème des croissances comparées

Le théorème des croissances comparées est constitué de quelques résultats de limites de fonctions qui seraient qualifiées de « formes indéterminées » par la méthode usuelle pour la limite d'un produit ou d'un quotient.

Énoncé


Plus généralement, pour tous réels strictement positifs a et b[1],

L'hypothèse a > 0 est indispensable. Supposer de plus b > 0 est en fait inutile (pour b ≤ 0, les limites considérées ne sont pas des formes indéterminées).

Démonstrations

On peut s'appuyer sur le cas particulier suivant de (1), dont plusieurs preuves sont indiquées dans l'article détaillé : En choisissant nb, on obtient en effet :

  1. en posant y = ax :
  2. en posant y = –ax :
  3. en posant y = a lnx :
  4. en posant y = –a lnx :

Chacune des quatre limites peut aussi se déduire de n'importe laquelle des trois autres par changement de variable.

Note et référence

  1. Claude Deschamps, François Moulin, André Warusfel et al., Mathématiques tout-en-un PCSI-PTSI : nouveau programme 2013, Dunod, (lire en ligne), p. 199.

Voir aussi

  • Portail de l'analyse
Cet article est issu de Wikipedia. Le texte est sous licence Creative Commons - Attribution - Partage dans les Mêmes. Des conditions supplémentaires peuvent s'appliquer aux fichiers multimédias.