Polynôme de Bell

En mathématiques, et plus précisément en combinatoire, un polynôme de Bell, nommé ainsi d'après le mathématicien Eric Temple Bell, est défini par:

où la somme porte sur toutes les suites j1, j2, j3, …, jnk+1 d'entiers naturels telles que :

et

Polynômes de Bell complets

La somme

est parfois appelée n-ème polynôme de Bell complet, et alors les polynômes Bn, k définis ci-dessus sont appelés des polynômes de Bell « partiels ». Les polynômes de Bell complets Bn peuvent être exprimés par le déterminant d’une matrice :

avec δk le symbole de Kronecker. La matrice dont Bn est le déterminant est une matrice de Hessenberg.

Interprétation combinatoire

Si l'entier n est partitionné en une somme dans laquelle "1" apparait j1 fois, "2" apparait j2 fois, et ainsi de suite, alors le nombre de partitions d'un ensemble à n éléments qui correspondent à cette partition de l'entier n quand on ne distingue plus les éléments de l'ensemble est le coefficient correspondant du polynôme.

Exemples

Par exemple, nous avons :

car il y a :

  • 6 partitions d'un ensemble à 6 éléments de la forme 5 + 1 ;
  • 15 partitions de la forme 4 + 2 ;
  • 10 partitions de la forme 3 + 3.

De même :

car il y a :

  • 15 partitions d'un ensemble à 6 éléments de la forme 4 + 1 + 1 ;
  • 60 partitions de la forme 3 + 2 + 1 ;
  • 15 partitions de la forme 2 + 2 + 2.

Propriétés

Formule de récurrence

avec B0=1.

Nombre de Stirling de seconde espèce

Nombre de Bell

Nombre de Stirling de première espèce (non signés)

Nombre de Lah

Factorielle

pour n1.

Dernier argument

Type binomial

avec B0=1.

Réciproque

Soit f une fonction infiniment dérivable en un point a et de réciproque f -1, alors :

[1]

Cas particuliers

En prenant f (x) = ex (soit f –1(x) = ln(x)) infiniment dérivable en 0, on a :

d’où :

soit :


En prenant f (x) = xα avec α ≠ 0 (soit f –1(x) = x1/α) infiniment dérivable en 1, on a :

avec .k la factorielle décroissante, d’où :

Factorielle décroissante

[2]

avec .k la factorielle décroissante.

Polynômes de Bell partiels

Cas général
Cas particuliers

Polynômes de Bell complets

Cas général
Cas particuliers
Autre expression

avec .k la factorielle décroissante.

Identité de convolution

Pour des suites xn, yn, n = 1, 2, …, on peut définir un produit de convolution par :

(les bornes de sommation étant 1 et n  1, et non 0 et n).

Soit le n-ème terme de la suite

Alors :

Applications

Formule de Faà di Bruno

La formule de Faà di Bruno peut être énoncée à l'aide des polynômes de Bell de la manière suivante :

De même, on peut donner une version de cette formule concernant les séries formelles : supposons que

et

Alors :

Les polynômes de Bell complets apparaissent dans l’exponentielle d’une série formelle (en) :

Moments et cumulants

Pour une variable aléatoire réelle dont le moment d’ordre r existe, on a :

avec mr le moment ordinaire d’ordre r et κ1, κ2, …, κr les cumulants d’ordre 1 à r.

Représentations de suites polynomiales

Pour toute suite a1, a2, a3, … de scalaires, soit :

Cette suite de polynômes est de type binomial (en), c'est-à-dire qu'elle satisfait l'identité binomiale suivante :

pour n ≥ 0.

En fait, on a également la réciproque :

Théorème
Toutes les suites de polynômes de type binomial peuvent s’exprimer sous la forme faisant intervenir les polynômes de Bell.

Si nous posons

en considérant cette série comme une série formelle, alors pour tout n :

Notes et références

  1. (en) W.-S. Chaou, Leetsch C. Hsu, Peter J.-S. Shiue, “Application of Faà di Bruno’s formula in characterization of inverse relations”, dans Journal of Computational and Applied Mathematics, vol. 190, 2006, p. 151–169
  2. (en) Andrzej Korzeniowski, “Binomial Tails Domination for Random Graphs via Bell Polynomials”, dans JPSS, vol. 4, n° 1, 2006, p. 99-105

Articles connexes

  • Portail des mathématiques
Cet article est issu de Wikipedia. Le texte est sous licence Creative Commons - Attribution - Partage dans les Mêmes. Des conditions supplémentaires peuvent s'appliquer aux fichiers multimédias.