Formule de Brahmagupta

En géométrie euclidienne, la formule de Brahmagupta, trouvée par Brahmagupta, est une généralisation de la formule de Héron à l'aire d'un quadrilatère convexe inscriptible (c'est-à-dire dont les sommets se situent sur un même cercle), uniquement en fonction des longueurs de ses côtés :

est le demi-périmètre du quadrilatère, a, b, c et d sont les longueurs de ses côtés et S son aire.

Démonstration

Diagramme de référence

En suivant les notations de la figure, l'aire S du quadrilatère inscriptible est la somme des aires des triangles (ADB) et (BDC) :

mais comme (ABCD) est inscriptible, les angles en A et C sont supplémentaires et ont le même sinus, par suite :

d'où en élevant au carré :

En appliquant le théorème d'Al-Kashi aux triangles (ADB) et (BDC) et en égalant les expressions du côté commun DB, on obtient :

ce qui s'écrit puisque les angles A et C sont supplémentaires :

En reportant dans la formule précédente, on obtient :

En introduisant , on obtient :

d'où

Cas particuliers

  • Le carré correspond au cas et
  • Le rectangle correspond au cas et
  • Le triangle correspond au cas  : on retrouve alors la formule de Héron.

Liens externes

Une autre explication de la formule de Brahmagupta par Michel Hort.

  • Portail de la géométrie
Cet article est issu de Wikipedia. Le texte est sous licence Creative Commons - Attribution - Partage dans les Mêmes. Des conditions supplémentaires peuvent s'appliquer aux fichiers multimédias.