Exponentielle complexe

L'exponentielle complexe est une fonction qui prolonge la fonction exponentielle réelle de base e à la variable complexe et possède les mêmes propriétés essentielles que cette dernière.

Cet article court présente un sujet plus développé dans : Fonction exponentielle.

Pour tout nombre complexe z, la série entière

est convergente. Sa somme est l'exponentielle de z, notée ez ou exp(z).

Propriétés

Le module et l'argument de ex + iy (pour x et y réels) sont respectivement ex et y mod 2π.

Les développements limités (ou développements en série des fonctions) de l'exponentielle, du cosinus et du sinus permettent de trouver que :

dont on peut déduire :

  • Portail de l'analyse
  • Arithmétique et théorie des nombres
Cet article est issu de Wikipedia. Le texte est sous licence Creative Commons - Attribution - Partage dans les Mêmes. Des conditions supplémentaires peuvent s'appliquer aux fichiers multimédias.