Construction des tables trigonométriques
Les tables de fonctions trigonométriques sont utiles dans beaucoup de domaines. Avant l'existence des calculatrices de poche, les tables trigonométriques étaient essentielles pour la navigation, dans les sciences et dans la technologie. La réalisation de tables de valeurs approchées des fonctions représentait un domaine d'étude important, et mena au développement des premiers dispositifs de calcul mécaniques.
Les ordinateurs modernes et les calculatrices de poche génèrent maintenant les valeurs des fonctions trigonométriques à la demande, en utilisant des bibliothèques de code mathématique. Souvent, ces bibliothèques utilisent des tables internes calculées d'avance, et la valeur requise est obtenue en utilisant une méthode d'interpolation appropriée.
Des tables trigonométriques simples sont maintenant souvent utilisées en infographie, où en général des valeurs précises ne sont pas nécessaires et les calculs doivent être effectués très rapidement.
Une approximation rapide, mais très imprécise
Donnons un algorithme rapide, mais imprécis, pour construire une table a de taille N, de valeurs approchées de sin(2πn/N), et une autre table b de valeurs approchées de cos(2πn/N) (0 ≤ n ≤ N - 1) :
- a[0] = 0
- b[0] = 1
- a[n+1] = a[n] + d × b[n]
- b[n+1] = b[n] - d × a[n+1]
pour n = 0, …, N - 1, où d = 2π/N.
Malheureusement, ce n'est pas un algorithme utile pour produire des tables de sinus, pour un certain nombre de raisons. Il fonctionnera seulement quand le nombre N sera très grand, et en utilisant l'arithmétique en précision infinie.
Par exemple, avec une taille de table N = 256, la dernière valeur du sinus est évaluée à −0,02438606 au lieu de 0, et pour N = 1 024, l'algorithme donne comme dernière valeur −0,006124031.
Si les valeurs de sinus et de cosinus obtenues par cet algorithme devaient être représentée sur un graphique, nous obtiendrions une spirale au lieu d'un cercle.
Voir aussi
Articles connexes
- Fonction trigonométrique
- Table de logarithmes
- Analyse numérique
- Calcul numérique
- Table de lignes trigonométriques exactes
- Théorie de l'approximation
- Histoire des logarithmes et des exponentielles
- Table numérique
- Portail des mathématiques