Éruption solaire

Une éruption solaire ou tempête solaire est un événement primordial de l'activité du Soleil. La variation du nombre d'éruptions solaires permet de définir un cycle solaire d'une période moyenne de 11,2 ans.

Éruption solaire, avec panaches émis en anneau.
L'activité solaire la plus importante jamais enregistrée à cette époque, imagée par Skylab, en 1973.
Image d'une éruption solaire prise par le satellite TRACE de la Nasa.
Éruption, avec éjections en longs filaments.
Craquelure et zones d'éjections. La longueur de la structure active dépasse l'équivalent de la distance Terre-Lune. La tache brillante au centre (point chaud) émet une grande quantité d'ultraviolets.

Pour les articles homonymes, voir Tempête (homonymie).

Elle se produit périodiquement à la surface de la photosphère et projette au travers de la chromosphère des jets de matière ionisée qui se perdent dans la couronne à des centaines de milliers de kilomètres d'altitude. Elle est provoquée par une accumulation d'énergie magnétique dans des zones de champs magnétiques intenses, au niveau de l'équateur solaire, probablement à la suite d'un phénomène de reconnexion magnétique.

Les éruptions solaires suivent trois stades, chacun d'eux pouvant durer de quelques secondes à quelques heures selon l'intensité de l'éruption. Durant le stade précurseur, l'énergie commence à être libérée sous la forme de rayons X. Puis les électrons, protons et ions accélèrent jusqu'à approcher la vitesse de la lumière[réf. souhaitée] lors du stade impulsif. Le plasma se réchauffe rapidement, passant de quelque 10 millions à 100 millions de kelvins[réf. souhaitée]. Une éruption donne non seulement un flash de lumière visible et une projection relativement dirigée dans l'espace circum-stellaire de plasma, mais émet également des radiations dans le reste du spectre électromagnétique : des rayons gamma aux ondes radio, en passant bien sûr par les rayons X. Le stade final est le déclin, pendant lequel des rayons X mous sont à nouveau les seules émissions détectées. Du fait de ces émissions de plasma, certaines éruptions solaires qui atteignent la Terre peuvent perturber les transmissions radioélectriques terrestres (orage magnétique) et provoquent l'apparition des aurores polaires en entrant en interaction avec le champ magnétique terrestre et la haute atmosphère.

La première éruption solaire observée le fut par l'astronome britannique Richard Carrington, le , lorsqu'il constata l'apparition d'une tache très lumineuse à la surface du Soleil (qui perdura cinq minutes).

Classification

Les éruptions solaires sont classées en différentes catégories selon l'intensité maximale de leur flux énergétique (en watts par mètre carré, W/m2) dans la bande de rayonnement X de 1 à 8 ångströms au voisinage de la Terre (en général, mesuré par l'un des satellites du programme GOES).

Les différentes classes sont nommées A, B, C, M et X. Chaque classe correspond à une éruption solaire d'une intensité dix fois plus importante que la précédente, où la classe X correspond aux éruptions solaires ayant une intensité de 10−4 W/m2. Au sein d'une même classe, les éruptions solaires sont classées de 1 à 10 selon une échelle linéaire (ainsi, une éruption solaire de classe X2 est deux fois plus puissante qu'une éruption de classe X1, et quatre fois plus puissante qu'une éruption de classe M5). Ces sigles correspondent à la mesure de la puissance du rayonnement X, telle que déterminée par le système GOES.

Deux des plus puissantes éruptions solaires ont été enregistrées par les satellites du programme GOES le et le . Elles étaient de classe X20 (2 mW/m2). Elles ont cependant été surpassées par une éruption du , la plus importante jamais enregistrée, estimée à X28[1].

La plus puissante des éruptions solaires observées au cours des 5 derniers siècles est probablement l'éruption solaire de 1859, qui eut lieu fin août-début septembre de cette année, et dont le point de départ fut observé entre autres par l'astronome britannique Richard Carrington. Cette éruption aurait laissé des traces dans les glaces du Groenland sous forme de nitrates et de béryllium 10, ce qui a permis d'en évaluer la puissance[2].

Risques induits

Les éruptions solaires peuvent provoquer des ondes de Moreton visibles depuis la surface de la Terre.

Hors de la perturbation des transmissions radioélectriques terrestres déjà évoquée, les éruptions solaires ont certaines conséquences néfastes :

  • Les rayons durs émis peuvent blesser les astronautes et endommager les engins spatiaux. Les personnels navigants de l’aviation civile sont parfois exposés (dose moyenne individuelle de 1,98 mSv par an en 2015). En France, ils sont suivis pour ce risque avec un calcul de dose effectué selon les trajets qu'ils effectuent. Une cartographie tridimensionnelle permet de connaître le rayonnement cosmique normal (moyen) en tout point et à toute altitude, et en 2017, la France est le seul pays à prendre aussi en compte les variations induites par les éruptions solaires, évaluées via les données de l’observatoire de Meudon (Hauts-de-Seine), et par une trentaine de dosimètres embarqués sur des avions de ligne d'Air France. Quatre éruptions solaires ont eu un effet mesurable sur la dose en dix ans selon Sylvain Israël (expert en radioprotection à l'IRSN)[3]. Ce Système d’information et d’évaluation a été revu en 2014 : les compagnies aériennes doivent fournir au registre national de dosimétrie des travailleurs, à l'IRSN les données de vol et de présence pour chaque personnel navigant, pour un calcul automatique des doses. Si nécessaire, certains personnels déjà très exposés diminuent leur temps de vol ou sont affectés à des lignes moins exposées, dans les vols transéquatoriaux, moins irradiés que près des pôles[3].
  • Les radiations UV et rayons X peuvent échauffer l'atmosphère extérieure, créant une résistance sur les satellites en orbite basse et réduisant leur durée de vie.
  • Les éjections de masse coronale, provoquant des tempêtes géomagnétiques, peuvent déranger le champ magnétique terrestre dans son ensemble et endommager des satellites en orbite haute.
  • Les fluctuations du champ magnétique terrestre peuvent induire des courants telluriques dans les longues lignes de transmission électriques, engendrant des tensions et des courants d'intensité considérable pouvant excéder les seuils de sécurité des équipements de réseau.
  • Certaines particules, très rapides et très puissantes, peuvent court-circuiter un satellite, voire l'éteindre et le rendre hors d'usage définitivement.

Conséquences

Les éruptions solaires peuvent avoir de graves incidences sur les systèmes technologiques, notamment les réseaux électriques[4].

En 774, un pic de carbone 14 dans les végétaux aurait possiblement été provoqué par une éruption solaire[5].

L'éruption solaire de 1859 a notamment produit de très nombreuses aurores polaires visibles jusque dans certaines régions tropicales et a fortement perturbé les télécommunications par télégraphe électrique.

Le , un puissant nuage de particules ionisées quitte le Soleil à destination de la Terre, à la suite d'une éruption solaire. Deux jours plus tard, les premières variations de tension sont observées sur le réseau de transport d'Hydro-Québec, dont les systèmes de protection se déclenchent le à 2 h 44. Une panne générale plonge le Québec dans le noir pendant plus de neuf heures[6].

Entre le et le , des orages magnétiques obligent les contrôleurs aériens à modifier le trajet de certains avions, causent des perturbations dans les communications satellitaires, provoquent une coupure de courant d'environ une heure en Suède[7], et endommagent plusieurs transformateurs électriques en Afrique du Sud[8].

En , la NASA lance le projet Solar shield pour étudier la survenue et tenter de localiser de possibles courants induits géomagnétiquement par une éruption solaire, afin d'assister les compagnies productrices d'électricité dans la protection de leurs systèmes[9]. Le , un projet similaire est initié au niveau européen : EURISGIC (European Risk from Geomagnetically Induced Currents).

Le , la NASA annonce dans un communiqué que la Terre a échappé, le 23 juillet 2012, à une « gigantesque tempête solaire ». Une tempête jamais vue depuis 1859 et qui, si elle avait touché la Terre, aurait pu « renvoyer la civilisation contemporaine au XVIIIe siècle », du fait que son impact aurait provoqué des dégâts d'une ampleur inédite, dont le coût dépasserait les 2 000 milliards de dollars à l'économie mondiale[10].

Notes et références

  1. http://www.spaceweather.com/solarflares/topflares.html
  2. New Scientist, 2005.
  3. IRSN (2017), Dossier "Radioprotection des travailleurs", voir p 12/24, magazine Repère n°32, mars 2017
  4. Severe Space Weather Events - Understanding Societal and Economic Impacts, National Academies Press, Space Studies Board, 2008.
  5. (en) Kate Becker, « Mystery cosmic event left its mark in 774 and 775 AD », sur Boulder Daily Camera, (consulté le )
  6. site d'Hydro-Québec
  7. (en) « Halloween Storms of 2003 Still the Scariest », sur NASA, Brian Dunbar (consulté le ).
  8. Solar Storm Threat Analysis, 2007, By James A. Marusek, Nuclear Physicist and Engineer, retired U. S. Department of Navy
  9. http://ccmc.gsfc.nasa.gov/Solar_Shield/Solar_Shield.html
  10. « La Terre a échappé de justesse à une gigantesque tempête solaire en 2012 », sur Le Monde, (consulté le )

Voir aussi

Articles connexes

Liens externes

  • Portail de l’astronomie
Cet article est issu de Wikipedia. Le texte est sous licence Creative Commons - Attribution - Partage dans les Mêmes. Des conditions supplémentaires peuvent s'appliquer aux fichiers multimédias.