Écoulement laminaire

En mécanique des fluides, l'écoulement laminaire est le mode d'écoulement d'un fluide où l'ensemble du fluide s'écoule plus ou moins dans la même direction, sans que les différences locales se contrarient (par opposition au régime turbulent, fait de tourbillons qui se contrarient mutuellement).

Pour les articles homonymes, voir écoulement.

Schéma d'une sphère placée dans un écoulement laminaire à très faible nombre de Reynolds. L'objet subit alors une force de trainée dans la direction opposée à celle de l'écoulement.
La fumée d'une bougie, laminaire en bas, turbulente en haut.

L'écoulement laminaire est généralement celui qui est recherché lorsqu'on veut faire circuler un fluide dans un tuyau (car il crée moins de pertes de charge), ou faire voler un avion (car il est plus stable, et prévisible par les équations).

Définition

Point de vue microscopique

Dans un écoulement laminaire, deux particules de fluide voisines à un instant donné restent voisines aux instants suivants. Ceci permet de décrire le champ de vitesses en utilisant les techniques classiques d'analyse mathématique. Quand l'écoulement devient turbulent, il est sans organisation apparente, et les techniques classiques ne suffisent plus.

Point de vue macroscopique

Les notions de régime laminaire ou turbulent sont liées à la viscosité du fluide. Dans une conduite ou autour d'un obstacle, au voisinage d'une paroi sur laquelle la vitesse relative du fluide est nulle, apparaissent de fortes variations de vitesse qui impliquent donc la viscosité.

Plus précisément un écoulement visqueux est caractérisé par un nombre sans dimension, le nombre de Reynolds qui mesure l'importance relative des forces inertielles liées à la vitesse et des forces de frottement liées à la viscosité. Si ces dernières sont prépondérantes le frottement entre deux couches fluides maintient leur cohésion et l'on obtient un écoulement laminaire. Lorsque le nombre de Reynolds augmente au-delà d'une certaine limite l'écoulement est déstabilisé, ce qui peut conduire à la turbulence après une phase de transition plus ou moins importante.

Cas classiques

Cas des conduites d'eau à section circulaire

Un écoulement stable est laminaire pour des nombres de Reynolds inférieurs à la valeur de transition qui est de l'ordre de 2000. Le profil des vitesses a alors une forme parabolique qui se transforme en une forme plus anguleuse lorsque la turbulence apparaît.

Cas des corps profilés dans l'air

La viscosité de l'air étant beaucoup plus faible que celle de l'eau, son effet est également plus faible et se limite à une zone proche de la paroi, appelée couche limite, dans laquelle la vitesse varie fortement sous l'effet de la viscosité. À une distance suffisante de la paroi cependant, l'influence de la viscosité peut être négligée : on est alors en dehors de la couche limite et il est possible de considérer le fluide comme un Fluide parfait (c'est-à-dire non visqueux) s'écoulant autour du corps engraissé de sa couche limite (un fluide parfait étant justiciable de l'équation de Bernoulli).

De plus, au bord d'attaque d'une aile, la vitesse relative est nulle, donc la viscosité est sans effet. À partir de là, la couche limite se développe, ce qui conduit à la décrire en fonction d'un Reynolds local dans lequel la longueur caractéristique n'est pas une dimension de l'obstacle mais la distance à partir du point au bord d'attaque. La couche limite est d'abord laminaire avant de changer de régime et devenir une couche limite turbulente. La partie de la couche limite turbulente la plus proche de la paroi forme néanmoins un film laminaire.

Cas des corps non profilés

Dans certains cas, l'écoulement passe directement du laminaire au turbulent (cas des plaques planes exposées frontalement). Dans d'autres cas (comme celui de la sphère ou du cylindre infini exposé frontalement), la transition de la couche limite du régime laminaire au régime turbulent est à l'origine de soudaines modifications de l'écoulement (et du , voir la crise de traînée de la sphère et du cylindre). À l'aval d'un corps non profilé la formation d'un sillage turbulent est précédée par une phase de transition tourbillonnaire, ce sillage turbulent s'organisant souvent en fréquences régulières (voir nombre de Strouhal).

Transition laminaire-turbulent

Effet d'un forçage stationnaire

(a) Écoulement laminaire, (b) écoulement turbulent.

L’étude du passage d’un écoulement laminaire à un écoulement turbulent lorsque le nombre de Reynolds augmente, a pu être faite dans certains cas en se basant sur la théorie des systèmes dynamiques (bifurcations). Les instabilités sont directement associées au terme non linéaire inertiel de transport par convection de l’équation de Navier-Stokes. La réponse non stationnaire à une excitation stationnaire témoigne du caractère non linéaire de la dynamique des fluides.

  • Si Re < 1, l’équation est linéaire car les phénomènes de diffusion dominent. L'équation de Navier-Stokes se simplifie et devient l’équation de Stokes ;
  • Si Re > 2000, l’équation est non linéaire car les phénomènes convectifs dominent. Les non linéarités produiront : des effets non stationnaires pour un forçage stationnaire, des brisures de symétries par rapport aux conditions aux limites initiales, en d'autres termes, la turbulence. Ce changement brutal qui s’opère correspond au passage du mode de transport de diffusion dominant au mode de transport convectif dominant.

Dissipation de l’énergie cinétique

Le tenseur des gradients de vitesse s’écrit comme la somme d’un tenseur symétrique et d’un tenseur antisymétrique : le tenseur des taux de déformation est directement lié à la dissipation d’énergie cinétique sous forme de chaleur alors que le tenseur des taux de rotation est relié aux tourbillons. Dans un écoulement quelconque, on a une distribution de déformation (qui dissipe l’énergie) et une contribution de rotation (qui ne la dissipe pas).

La turbulence permet de dissiper l’énergie cinétique plus efficacement qu’un écoulement laminaire.

En régime turbulent, l’énergie cinétique fournie à l’écoulement à grande échelle (typiquement la taille de l’écoulement) est transmise vers les petites échelles par le mécanisme de cascade d’énergie : des mouvements tourbillonnants à l’échelle de l’écoulement moyen sont générateurs de tourbillons à des échelles un peu plus petites qui eux-mêmes génèrent des mouvements à des échelles plus petites etc. Ce processus de cascade d’énergie se termine finalement lorsque les mouvements excités de très petite taille sont dissipés en chaleur sous l’effet de la viscosité moléculaire. On peut ainsi dire, d’une certaine manière, que la dissipation a lieu par transfert d’énergie vers les petites échelles dans un écoulement turbulent. Ce n’est pas le cas en régime laminaire où la dissipation opère directement à grande échelle.

Turbulence et dissipation

Un écoulement moyen forme de petites structures par le mécanisme d’étirement du tourbillon. Ces petites structures correspondent au champ fluctuant de la décomposition de Reynolds. L’énergie est donc passée de l’écoulement moyen vers ces tubes qui ont de forts gradients, tournent vite et sont petits, donc ils dissipent efficacement l’énergie.

Notes et références

    Voir aussi

    • Portail du génie mécanique
    • Portail de la physique
    Cet article est issu de Wikipedia. Le texte est sous licence Creative Commons - Attribution - Partage dans les Mêmes. Des conditions supplémentaires peuvent s'appliquer aux fichiers multimédias.